汽车日报 汽车日报

当前位置: 首页 » 汽车资讯 »

比亚迪e6工作原理

比亚迪E6纯电动汽车动力系统的结构及检修

比亚迪E6是比亚迪股份有限公司自主研发的一款环保、无污染、无废气排放、行驶噪音低的纯电动汽车,它兼容了SUV和MPV的设计理念,是一款性能良好的跨界车。

比亚迪E6纯电动汽车使用磷酸锂钴铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1kWh)以内,每100km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。

一、比亚迪E6纯电动汽车动力系统的结构

1.比亚迪E6纯电动汽车动力系统

比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。

(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。

(2)电动车的动力模块有:电动机总成、电池包体总成。

(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。

图1 比亚迪E6纯电动汽车动力系统结构及原理

2.动力控制系统的工作原理

(1)充电过程

充电站的380V高压充电桩通过车辆上的充电口,或者220V 市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直 接途径应急开关后对HV电池组充电。在充电过程当中,电源管理 器一直监控着HV电池组的温度和电压,如果发现HV电池组内部 某单体温度或电压过高,就会切断配电箱给HV电池组的供电。

(2)放电过程

HV电池组在电源管理器和漏电保护器的监控下,通过应急开 关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一 部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主 控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控 制器的信号)控制着电机控制器的工作,电机控制器主要控制流向 电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。 另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换 器将高压直流电转化为低压直流电,为车辆电动液压助力转向系 统提供42V的电源,同时还为整车用电设备提供12V的电源。

3.动力系统各部件的作用

(1)电机控制器:负责控制电机的前进、倒退、维持电动车的正 常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控 制电流的工作,保证能够按照我们的意愿输出合适的电流参数。

(2)DC-DC:负责将330V高压直流转低压提供给车载低压 用电设备,如蓄电池、EPS等。

(3)动力配电箱:通过配电箱对电池包体中巨大的能量进行控 制,相当于一个大型的电闸,通过继电器的吸合来控制电流通断, 将电流进行分流等。关键零部件为继电器,为了控制如此大的电流 通过整车,需要通过几个继电器的并联工作,这也为继电器工作一 致性和可靠性提出了苛刻的要求。

( 4 ) 电池管理单元:也称为电源管理器系统( B a t t e r y Management System,简称BMS)是电动汽车电池系统的参数 测试及控制装置,具有安全预警与控制、剩余电量估算与指示、充放电能量管理与过程控制、信息处理与通讯等主要功能。

(5)动力电机:动力电机根据冷却形式分风冷和水冷,根据结构分为直流有刷电机和直流无刷电机以及交流电机。该车使用的电机为交流无刷电机,通过采集电机旋变信号进行工作。

(6)动力总成(电池包):动力总成做为提供整车动力能源的设备;根据电池种类的不同可分为锂电池、镍氢电池和铅酸类电池。

(7)车载慢充:车载慢充系统需要提升低压转高压的转化效率。需要注意的是使用家用插座为电动车充电时,也需要考虑插座及线路的承受能力,需要额定电流10A的单项220V插座,如果采用一些伪劣产品的插座,也可能导致充电插座烧毁、线路烧熔等安全隐患。

(8)漏电保护器:通过将一端和负极相连,一端对车身连接,检测电流和电压值,一旦发现有超出限制的电流和电压,则发出报警,并切断控制模块,保证用电安全动力蓄电池系统泄露电流量不超过2mA(E6车型);整车绝缘电阻值应大于100Ω/V(E6车型)。

(9)挡位控制器:用来控制电动车前进、后退、停车等动作的部件,由于电动车与传统燃油车的控制方式不同,故挡位控制类似自动挡。

(10)主控ECU:接受各高压监控系统发出的信号,并加以判断,控制冷却系统、制动系统、车速里程等。

(11)加速踏板:通过控制电流大小,从而控制电机转速。

(12)车载充电口:车载充电可分为快充和慢充,为了保证充电迅速高效,使用特定的充电口进行充电,充电时需要保证整车防水密封性要求,并且能够保证车载充电口能够承受瞬时大电流的充电过程。

(13)应急开关:通常设计为人工操作的安全开关,一般设计在电池的正负极近端,保证通过人工操作应急开关能够在紧急情况下将电池电压封闭。

二、比亚迪E6纯电动汽车动力系统的检修

笔者在修理厂涉及到一辆比亚迪E6纯电动汽车HV电池组电量充足,为用电设备提供12V电源的电量也充足的情况下,在原地起步时踩下制动踏板无法挂前进挡。观察仪表板,其中OK指示灯亮表示启动正常,但是踩下制动踏板,拨动自动变速操纵杆,仪表板上的D挡位显示灯不亮。

使用比亚迪汽车专用ED400型电脑检测仪检测故障码和读取挡位控制器的数据流。所检测结果是系统无故障码,如图2所示。挂上D挡时,挡位传感器数据流无变化,如图3所示。由此看来该故障点比较隐蔽,技术人员无法从电脑检测仪获取准确的故障信息。

图2 ED400型电脑检测仪 检测故障码

图3 ED400型电脑检测仪 读取数据流

我们首先排除制动深度传感器是否存在故障,制动深度传感器安装在制动踏板上,其连接电机控制器电路图如图4所示。电机控制器为制动深度传感器提供2条5V的电源线,即连接制动深度传感器的连接器B05的2号和7号端子均为5V。制动深度传感器的2条负极线通过电机控制器内部搭铁,即连接器B05的9号和10号端子与车身之间电阻应小于1Ω,与车身之间电压接近0。2条位置信号线分别输出与制动踏板深度变化成正、反比的电压,而两者电压之和近似是5V。制动深度传感器的电路分析如表1所示,经过万用表检测,制动深度传感器电路检测值与正常理论值非常接近,不存在故障。

图4 制动深度传感器与电机控制器之间电路图

从中获知挡位控制器或挡位传感器出现问题。挡位传感器安装在挡位执行器上,挡位执行器上还装有换挡手柄,是人机对话的窗口。查阅维修手册电路如图5所示,挡位控制器分别与挡位传感器A和挡位传感器B连接,其中挡位传感器A在人工操纵换挡手柄N挡或P挡时产生信号,并传递给挡位控制器。挡位传感器B在人工操纵换挡手柄R挡或D挡时产生信号,并传递给挡位控制器。

图5 挡位控制器或挡位传感器接线图

首先分析挡位传感器A与挡位控制器之间的电路,如表2所示。其中与挡位传感器A相连的连接器G54的1号端子作用是挡位控制器为挡位传感器A提供5V电源。G54的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到P挡位置时,G54的2号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到N挡位置时,G54的4号端子正常情况下相对于车身应输出电压约5V。

使用万用表检测挡位传感器A,在仪表板上OK指示灯亮情况下,测量G54的1号端子与车身之间的电压,正常显示4.88V。使用欧姆档测量连接器3号端子电阻值,显示0.2Ω,再检测该端子的电压只有0.02V,表示该3号端子接地良好。拨动换挡手柄到P挡位置,同时检测连接器G54的2号端子输出电压显示4.87V,再检测与挡位控制器相连接的连接器G56的3号端子的电压,也显示为4.87V,说明传递P挡信息的该线路不存在故障。同理检测传递N挡信息的线路,即拨动换挡手柄到N挡位置,同时检测连接器G54的4号端子输出电压与连接挡位控制器的连接器G56的5号端子的电压是否一致,实际测量均为4.86V,说明传递N挡信息的线路也不存在故障。

再来分析挡位传感器B与挡位控制器之间的电路,如表3所示。其中与挡位传感器B相连的连接器G55的4号端子作用是挡位控制器为挡位传感器B提供5V电源。G55的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到R挡位置时,G55的1号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到D挡位置时,G55的2号端子正常情况下相对于车身应输出电压约5V。

使用万用表检测挡位传感器B,按下启动按钮,仪表板上OK指示灯亮,测量G55的4号端子与车身之间的电压,其显示4.88V,该线路正常。使用欧姆档测量连接器G55的3号端子电阻值,显示0.14Ω,再检测该端子与车身之间的电压只有0.02V,表示该3号端子与车身接地良好。拨动换挡手柄到R挡位置,同时检测连接器G55的1号端子输出电压显示4.86V,再检测导线另一端的连接器G56的4号端子的电压,也显示为4.86V,说明传递R挡信息的该线路正常。但是检测传递D挡信息的线路发现异常,即拨动换挡手柄到D挡位置,同时检测连接器G55的2号端子相对于车身输出电压是4.88V,再检测与挡位控制器相连的连接器G56的6号端子输出电压却是0.9V,一条导线的两端电压不一样,怀疑传递D挡信息的线路存在故障。

维修人员拆下中控饰板,检查挡位传感器到挡位控制器之间的D挡线路,发现该导线某一处被中控饰板夹住,已破损造成该导线搭铁,挂D挡时,D挡信号没有传递给挡位控制器,车辆无法前进。使用电工胶布包扎破损地方,恢复电路原本的功能,启动车辆,挂上D挡,车辆可以行使,故障完全排除。

比亚迪E6纯电动汽车动力系统的结构及检修(实战篇)

新能源丨混合动力丨汽车丨维修点击上方关注我,专注专业

二、比亚迪E6纯电动汽车动力系统的检修

笔者在修理厂涉及到一辆比亚迪E6纯电动汽车HV电池组电量充足,为用电设备提供12V电源的电量也充足的情况下,在原地起步时踩下制动踏板无法挂前进挡。观察仪表板,其中OK指示灯亮表示启动正常,但是踩下制动踏板,拨动自动变速操纵杆,仪表板上的D挡位显示灯不亮。

使用比亚迪汽车专用ED400型电脑检测仪检测故障码和读取挡位控制器的数据流。所检测结果是系统无故障码,如图2所示。挂上D挡时,挡位传感器数据流无变化,如图3所示。由此看来该故障点比较隐蔽,技术人员无法从电脑检测仪获取准确的故障信息。

我们首先排除制动深度传感器是否存在故障,制动深度传感器安装在制动踏板上,其连接电机控制器电路图如图4所示。电机控制器为制动深度传感器提供2条5V的电源线,即连接制动深度传感器的连接器B05的2号和7号端子均为5V。制动深度传感器的2条负极线通过电机控制器内部搭铁,即连接器B05的9号和10号端子与车身之间电阻应小于1Ω,与车身之间电压接近0。2条位置信号线分别输出与制动踏板深度变化成正、反比的电压,而两者电压之和近似是5V。制动深度传感器的电路分析如表1所示,经过 万用表检测,制动深度传感器电路检测值与正常理论值非常接近,不存在故障。

从中获知挡位控制器或挡位传感器出现问题。挡位传感器安装在挡位执行器上,挡位执行器上还装有换挡手柄,是人机对话的窗口。查阅维修手册电路如图5所示,挡位控制器分别与挡位传感器A和挡位传感器B连接,其中挡位传感器A在人工操纵换挡手柄N挡或P挡时产生信号,并传递给挡位控制器。挡位传感器B在人工操纵换挡手柄R挡或D挡时产生信号,并传递给挡位控制器。

首先分析挡位传感器A与挡位控制器之间的电路,如表2所示。其中与挡位传感器A相连的连接器G54的1号端子作用是挡位控制器为挡位传感器A提供5V电源。G54的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到P挡位置时,G54的2号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到N挡位置时,G54的4号端子正常情况下相对于车身应输出电压约5V。

使用万用表检测挡位传感器A,在仪表板上OK指示灯亮情况下,测量G54的1号端子与车身之间的电压,正常显示4.88V。使用欧姆档测量连接器3号端子电阻值,显示0.2Ω,再检测该端子的电压只有0.02V,表示该3号端子接地良好。拨动换挡手柄到P挡位置,同时检测连接器G54的2号端子输出电压显示4.87V,再检测与挡位控制器相连接的连接器G56的3号端子的电压,也显示为4.87V,说明传递P挡信息的该线路不存在故障。同理检测传递N挡信息的线路,即拨动换挡手柄到N挡位置,同时检测连接器G54的4号端子输出电压与连接挡位控制器的连接器G56的5号端子的电压是否一 致,实际测量均为4.86V,说明传递N挡信息的线路也不存在故障。

再来分析挡位传感器B与挡位控制器之间的电路,如表3所示。其中与挡位传感器B相连的连接器G55的4号端子作用是挡位控制器为挡位传感器B提供5V电源。G55的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到R挡位置时,G55的1号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到D挡位置时,G55的2号端子正常情况下相对于车身应输出电压约5V。

使用万用表检测挡位传感器B,按下启动按钮,仪表板上O K 指示灯亮,测量G 55的4号端子与车身之间的电压,其显示4.88V,该线路正常。使用欧姆档测量连接器G55的3号端子电阻值,显示0.14Ω,再检测该端子与车身之间的电压只有0.02V,表示该3号端子与车身接地良好。拨动换挡手柄到R挡位置,同时检测连接器G55的1号端子输出电压显示4.86V,再检测导线另一端的连接器G56的4号端子的电压,也显示为4.86V,说明传递R挡信息的该线路正常。但是检测传递D挡信息的线路发现异常,即拨动换挡手柄到D挡位置,同时检测连接器G55的2号端子相对于车身输出电压是4.88V,再检测与挡位控制器相连的连接器G56的6号端子输出电压却是0.9V,一条导线的两端电压不一样,怀疑传递D挡信息的线路存在故障。

维修人员拆下中控饰板,检查挡位传感器到挡位控制器之间的D挡线路,发现该导线某一处被中控饰板夹住,已破损造成该导线搭铁,挂D挡时,D挡信号没有传递给挡位控制器,车辆无法前进。使用电工胶布包扎破损地方,恢复电路原本的功能,启动车辆,挂上D挡,车辆可以行使,故障完全排除。

比亚迪e6纯电动汽车工作原理,了解一下

1.结构

驱动电动机控制器类型为电压型逆变器,利用IGBT将直流电转换为交流电,额定电压为330V,主要功能是控制电动机和发电机等根据不同工况控制电动机的正反转、功率、扭矩、转速等。即控制电动机的前进、倒退,维持电动汽车的正常运转。关键零部为IGBT,IGBT实际为大电容,目的是为了控制电流的工作,保证能够按照驾驶员的意愿输出合适的电流参数。

驱动电动机控制器总成包含上、中、下三层,上、下层为电动机控制单元,中层为水道冷却控制单元,总成还包括信号接插件(包含12V电源/CAN线/挡位/加速踏板/刹车/旋变/电动机温度信号线/预充满信号线等),2根动力电池正负极接插件、3根电动机三相线接插件、2个水套接头及其他周边附件。电动机驱动器的结构如下图所示。

2.功能

① 控制电动机正反向驱动、正反转发电。

② 控制电动机的动力输出,同时对电动机进行保护。

③ 通过CAN与其他控制模块通信,接收并发送相关的信号,间接地控制车上相关系统正常运行。

④ 制动能量加馈控制。

⑤ 自身内部故障的检测和处理。

⑥ 最高工作转速:在额定电压时,运行所能达到的最高转速为7500r/min。

⑦ 半坡起步功能。

⑧ 防止电动机飞车、防止IPM保防护。

⑨ 采集P挡、R挡、N挡、D挡位信号。

⑩ 采集油门深度传感器和刹车深度传感器信号。

3.绝缘栅双极晶体管控制原理

绝缘栅双极晶体管(IGBT)被认为是电动汽车的核心技术之一。它的作用是进行交流电和直流电转换,同时还承担电压的高低转换功能。另外也将电动机回收的交流电流转换成可供蓄电池充电的电流。IGBT的结构如下图所示。

动力电池组和电动机的正负极分别与IGBT模块的输入端及输出端连接,IGBT的输出电压由主控制器向其输入的PWM信号控制。在控制器运行过程中,主控制器通过采集分析加速踏板、制动踏板、车速等传感器信号来进行电动机电压的输出控制,输出方式是将PWM信号传递到IGBT模块,通过采集电动机电压、电动机电流、电动机和IGBT模块的温度等反馈信号进行系统的过流、过压、过热保护。

4.驱动系统控制策略

电动汽车行驶过程中,驾驶员根据实际行驶工况的需要,通过操作加速踏板、制动踏板、变速器操纵杆来控制电动汽车的车速。在不考虑换挡的情况下,加速踏板的信号就代表驾驶员的指令,因此电动汽车的车速实际上是通过驾驶员实现广义的车速闭环控制来实现的。

按加速踏板所代表的给定指令不同,控制系统可以分为开环控制系统、电流闭环控制系统和车速-电流双闭环控制系统。

开环控制系统就是用加速踏板信号代表主控制器向IGBT模块输送PWM占空比信号,其特点是线路简单,成本低,但是当电池电压参数变化时,没有自动调节作用,抗干扰能力差,起步加速和动力指示不高。

电流单闭环控制系统就是用加速踏板信号代表电动机电枢电流,即电动机的输出扭矩。电流单闭环车速控制系统的主要特点是响应时间短,控制准确,且具有自调节能力,但是此系统容易出现过流现象,可能导致电动机或者控制器损坏。

加速踏板信号代表驾驶员期望车速的控制系统称为车速控制系统。如安装车速传感器检测车速,并将与期望车速相比较构成反控制,则称为车速单闭环控制系统。双闭环控制系统具有比较满意的动态性能,加速踏板位置直接代表驾驶员的期望车速,直观,便于理解,启动加速好,动力性好。

动力电动机再生制动:电动力系统中采用了“再生制动器”,它利用电动机的发电来再次利用动能。电动机通常在通电后开始转动,但是让外界力量带动电动机旋转时,它又可作为发电机来发电。因此,利用驱动轮的旋转力带动电动机发电,在给蓄电池充电的同时,又可利用发电时的电阻来减速。该系统在制动时与液压制动器同时控制再生制动器,完美地将原来在减速中作为摩擦热散失的动能回收为行驶用能量。城市中行驶时,反复进行的调速操作具有较高的能量回收效果,所以在低速时优先使用再生制动器。例如,在城市中行驶100km,即可再生相当于1L汽油的能量。

5.预充满信号回路控制

预充电目的:在没有进行预充的情况下,主接触器吸合可能引起电流过大而烧结主接触器和击穿电容。

钥匙置于ON挡时,为缓解高压电池的冲击,电池管理器先吸合预充接触器控制继电器。来自动力电池的高压电经过预充接触器与两个并联的限流电阻,加载到母线正极上。驱动电动机控制器检查母线正极上的电压达到动力电池额定电压的2/3时,向电池管理器反馈一个预充满信号。此后组合仪表OK灯点亮,从而电池管理器控制正极放电接触器的控制器吸合,断开预充接触器的控制器。

如有故障,则用诊断仪检查预充情况。如预充失败,则进行以下操作。

①检查电池管理器是否进行预充。

②从电池管理器K05连接器后端引线。

③检查线束端子M33-25(钥匙ON挡)与车身的电压(正常值小于1V)。

如果不正常,则更换电池管理器,再检查高压电源电路。

预充满信号回路如下图所示。

6.驱动电动机控制器故障码

未经允许不得转载: 汽车日报 » 比亚迪e6工作原理

相关文章

themebetter

contact