比亚迪e系列第一款车拆解,底盘和e6一样,动力总成也一样
海鸥是比亚迪e系列的首款车型,比亚迪e系列的第一款车,在此之前,比亚迪主要做的是汉 EV,而这款车是从比亚迪e6衍生出来的,在之前我们也做过一期比亚迪e6的拆解。
海鸥这款车有个特点就是外观非常漂亮,很有冲击力,侧面看线条很流畅,有点像跑车的感觉。而且它的内饰也非常漂亮,配置也很高,在这个价位区间里算是非常优秀了。但是它不像e6那么好开,操控并没有那么好。
因为海鸥这款车是从e6衍生出来的,所以在底盘方面和e6完全一致,甚至动力总成也是一样的。但是这款车从底盘、内饰到驾驶感受上都有很大差别。今天我们就来详细介绍一下这款车。
底盘
海鸥是e系列首款车型,也是比亚迪e系列第一款车,所以在底盘方面采用了和e6一样的底盘设计。先来看一下这款车的悬挂,海鸥的悬挂采用了前麦弗逊式独立悬架,后扭力梁式非独立悬架,底盘布局很合理,从图中我们可以看到,海鸥的前悬用了横向稳定杆和多连杆式独立悬架,后悬用了横向稳定杆和扭力梁式非独立悬架。但这样的布置会导致整个车重偏高,同时也会让车辆重心偏高。所以实际开起来并不是那么好操控。
海鸥的底盘还有个特点就是很软,这种软是和e6完全不一样的。e6在前悬挂上用了横向稳定杆和多连杆式独立悬架,这样的设计可以降低车辆重心。但海鸥这款车用的是前麦弗逊式独立悬架和后扭力梁式非独立悬架。这样做带来的直接后果就是导致这款车在操控方面完全不如e6,因为它不像e6那样可以通过调整悬架来达到很好的操控。
动力
海鸥采用的是比亚迪的e平台,这个平台也是比亚迪的专利。它的优势就在于它能够将各个部件进行模块化设计,从而使其更好的进行组合,而不需要改变整体结构,从而让车辆的整个架构更加灵活。这一点和比亚迪e系列完全不同,e系列在产品层面上是要重新进行设计和开发,而海鸥则是直接将各个部件进行了模块化设计。
海鸥有三种动力总成可选,分别是55 KM、60 KM和80 KM。这三种动力总成分别是磷酸铁锂电池、三元锂电池和高性能电池。其中55 KM是55 kWh的三元锂电池,60 KM是60 kWh的磷酸铁锂电池,80 KM是80 kWh的磷酸铁锂电池。从动力参数上来看,海鸥和e6都差不多。
车身结构
底盘结构很简单,就是三根纵梁,两个纵梁之间是一根横梁,两根纵梁之间是一根横梁,横梁上有一条横向的加强筋。
最重要的一个地方就是电池包的位置。这款车的电池包放在了后排座椅下方,这个位置的电池包最大特点就是“不安全”。因为我们在拆解e6时发现,这款车的电池包在后排座椅下方,而且没有任何固定措施。这就导致了这个位置一旦发生碰撞,电池包就有可能会被挤压变形。
由于海鸥是新车型,所以说整车结构和e6是完全一致的。唯一不一样的地方就是海鸥的车身结构和e6完全不一样。所以在安全性方面海鸥肯定没有e6那么好。这也就是为什么我们在拆解e6时,会发现它有一个严重的安全问题。
电池
海鸥这款车的电池是由比亚迪自主研发的,电芯是比亚迪自家的,同时采用了比亚迪自主研发的 CTP技术,即电池包直接集成到车身框架中,没有采用传统的底盘电池包。
CTP技术可以让车辆拥有更好的续航和能量密度,同时也减少了整车重量。CTP技术与刀片电池技术是一脉相承的,在电池管理系统方面和刀片电池也是一致的。但是 CTP技术是需要车身底盘完整匹配才能实现更好的能量利用率,而刀片电池不需要底盘匹配,直接将电芯集成到了车身框架中。
海鸥这款车的动力电池组是比亚迪自主研发的磷酸铁锂电池,容量为70 kwh。电池组为两个单体结构,每个单体的容量为21 kwh,总容量为61 kwh。
驾驶感受
动力方面,比亚迪海鸥搭载了一台最大功率为135 kW,最大扭矩为280N·m的电机,匹配的是一台磷酸铁锂刀片电池。由于使用的是磷酸铁锂电池,所以这款车的续航里程可以达到550公里左右。不过需要注意的是,这款车并不支持快充,只支持慢充。
底盘方面,海鸥与e6的底盘完全一致,采用了前麦弗逊式独立悬架和后多连杆式独立悬架。这个悬架组合与比亚迪e6完全一样。
因为比亚迪海鸥是e系列的第一款车,所以在研发时,就将所有底盘系统进行了整合。而这款车使用的是一套由比亚迪自主研发的三电系统。由于这款车采用了磷酸铁锂电池,所以电池组会比三元锂电池更重一些,但是也不是特别重。
由于比亚迪e系列一直以来都是以轻量化为主要卖点,所以这款车在车身重量上应该会比e6轻一些。但是从实际感受来看,这款车的重心还是比较高的。
内饰
内饰方面,我觉得海鸥这款车的设计还是非常漂亮的,在这个价位里面属于比较优秀的了。同时它的用料和做工都非常好。方向盘采用了真皮包裹,握感非常舒服。仪表采用了全液晶仪表,显示内容非常丰富。中控屏幕是10.1英寸的,同时它还有一个10.1英寸的液晶大屏,这两个屏幕都很大,并且都是全触摸操作。
车内有很多物理按键,但是这些物理按键设计的都非常合理,手感也很好。方向盘前面有一个小小的显示屏,可以显示一些信息。空调面板是全触控操作的,空调出风口也是全触控操作的。这些设计都非常合理,也很实用。
在空调面板和中控屏幕上还有一些常用的物理按键和旋钮开关。
总结
在这个价位,海鸥算是非常优秀的一款车了。首先从外观上看,这款车的外观造型非常动感,侧面线条也很流畅。而且它的内饰非常漂亮,配置也很高。从底盘方面来看,这款车的操控并不像e6那么好开,而底盘是和e6一样的,所以从驾驶感受上来说,这款车和e6还是有一定区别的。但是从底盘方面来说,它又是和e6完全一致的。
因为比亚迪在新能源汽车方面有深厚的技术积累和品牌沉淀,这是其他品牌无法比拟的。但是海鸥也有自己不足的地方:首先是它的外观造型过于动感,运动风格不是很强烈。其次是它的内饰做工还可以进一步提升。最后就是它比较重。
它不仅颜值高、配置高、动力也不错、操控也很好。而且从底盘方面来说,这款车也不会给人太多廉价感。
比亚迪E6纯电动汽车动力系统的结构及检修
比亚迪E6是比亚迪股份有限公司自主研发的一款环保、无污染、无废气排放、行驶噪音低的纯电动汽车,它兼容了SUV和MPV的设计理念,是一款性能良好的跨界车。
比亚迪E6纯电动汽车使用磷酸锂钴铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1kWh)以内,每100km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。
一、比亚迪E6纯电动汽车动力系统的结构
1.比亚迪E6纯电动汽车动力系统
比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。
(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。
(2)电动车的动力模块有:电动机总成、电池包体总成。
(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。
图1 比亚迪E6纯电动汽车动力系统结构及原理
2.动力控制系统的工作原理
(1)充电过程
充电站的380V高压充电桩通过车辆上的充电口,或者220V 市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直 接途径应急开关后对HV电池组充电。在充电过程当中,电源管理 器一直监控着HV电池组的温度和电压,如果发现HV电池组内部 某单体温度或电压过高,就会切断配电箱给HV电池组的供电。
(2)放电过程
HV电池组在电源管理器和漏电保护器的监控下,通过应急开 关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一 部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主 控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控 制器的信号)控制着电机控制器的工作,电机控制器主要控制流向 电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。 另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换 器将高压直流电转化为低压直流电,为车辆电动液压助力转向系 统提供42V的电源,同时还为整车用电设备提供12V的电源。
3.动力系统各部件的作用
(1)电机控制器:负责控制电机的前进、倒退、维持电动车的正 常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控 制电流的工作,保证能够按照我们的意愿输出合适的电流参数。
(2)DC-DC:负责将330V高压直流转低压提供给车载低压 用电设备,如蓄电池、EPS等。
(3)动力配电箱:通过配电箱对电池包体中巨大的能量进行控 制,相当于一个大型的电闸,通过继电器的吸合来控制电流通断, 将电流进行分流等。关键零部件为继电器,为了控制如此大的电流 通过整车,需要通过几个继电器的并联工作,这也为继电器工作一 致性和可靠性提出了苛刻的要求。
( 4 ) 电池管理单元:也称为电源管理器系统( B a t t e r y Management System,简称BMS)是电动汽车电池系统的参数 测试及控制装置,具有安全预警与控制、剩余电量估算与指示、充放电能量管理与过程控制、信息处理与通讯等主要功能。
(5)动力电机:动力电机根据冷却形式分风冷和水冷,根据结构分为直流有刷电机和直流无刷电机以及交流电机。该车使用的电机为交流无刷电机,通过采集电机旋变信号进行工作。
(6)动力总成(电池包):动力总成做为提供整车动力能源的设备;根据电池种类的不同可分为锂电池、镍氢电池和铅酸类电池。
(7)车载慢充:车载慢充系统需要提升低压转高压的转化效率。需要注意的是使用家用插座为电动车充电时,也需要考虑插座及线路的承受能力,需要额定电流10A的单项220V插座,如果采用一些伪劣产品的插座,也可能导致充电插座烧毁、线路烧熔等安全隐患。
(8)漏电保护器:通过将一端和负极相连,一端对车身连接,检测电流和电压值,一旦发现有超出限制的电流和电压,则发出报警,并切断控制模块,保证用电安全动力蓄电池系统泄露电流量不超过2mA(E6车型);整车绝缘电阻值应大于100Ω/V(E6车型)。
(9)挡位控制器:用来控制电动车前进、后退、停车等动作的部件,由于电动车与传统燃油车的控制方式不同,故挡位控制类似自动挡。
(10)主控ECU:接受各高压监控系统发出的信号,并加以判断,控制冷却系统、制动系统、车速里程等。
(11)加速踏板:通过控制电流大小,从而控制电机转速。
(12)车载充电口:车载充电可分为快充和慢充,为了保证充电迅速高效,使用特定的充电口进行充电,充电时需要保证整车防水密封性要求,并且能够保证车载充电口能够承受瞬时大电流的充电过程。
(13)应急开关:通常设计为人工操作的安全开关,一般设计在电池的正负极近端,保证通过人工操作应急开关能够在紧急情况下将电池电压封闭。
二、比亚迪E6纯电动汽车动力系统的检修
笔者在修理厂涉及到一辆比亚迪E6纯电动汽车HV电池组电量充足,为用电设备提供12V电源的电量也充足的情况下,在原地起步时踩下制动踏板无法挂前进挡。观察仪表板,其中OK指示灯亮表示启动正常,但是踩下制动踏板,拨动自动变速操纵杆,仪表板上的D挡位显示灯不亮。
使用比亚迪汽车专用ED400型电脑检测仪检测故障码和读取挡位控制器的数据流。所检测结果是系统无故障码,如图2所示。挂上D挡时,挡位传感器数据流无变化,如图3所示。由此看来该故障点比较隐蔽,技术人员无法从电脑检测仪获取准确的故障信息。
图2 ED400型电脑检测仪 检测故障码
图3 ED400型电脑检测仪 读取数据流
我们首先排除制动深度传感器是否存在故障,制动深度传感器安装在制动踏板上,其连接电机控制器电路图如图4所示。电机控制器为制动深度传感器提供2条5V的电源线,即连接制动深度传感器的连接器B05的2号和7号端子均为5V。制动深度传感器的2条负极线通过电机控制器内部搭铁,即连接器B05的9号和10号端子与车身之间电阻应小于1Ω,与车身之间电压接近0。2条位置信号线分别输出与制动踏板深度变化成正、反比的电压,而两者电压之和近似是5V。制动深度传感器的电路分析如表1所示,经过万用表检测,制动深度传感器电路检测值与正常理论值非常接近,不存在故障。
图4 制动深度传感器与电机控制器之间电路图
从中获知挡位控制器或挡位传感器出现问题。挡位传感器安装在挡位执行器上,挡位执行器上还装有换挡手柄,是人机对话的窗口。查阅维修手册电路如图5所示,挡位控制器分别与挡位传感器A和挡位传感器B连接,其中挡位传感器A在人工操纵换挡手柄N挡或P挡时产生信号,并传递给挡位控制器。挡位传感器B在人工操纵换挡手柄R挡或D挡时产生信号,并传递给挡位控制器。
图5 挡位控制器或挡位传感器接线图
首先分析挡位传感器A与挡位控制器之间的电路,如表2所示。其中与挡位传感器A相连的连接器G54的1号端子作用是挡位控制器为挡位传感器A提供5V电源。G54的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到P挡位置时,G54的2号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到N挡位置时,G54的4号端子正常情况下相对于车身应输出电压约5V。
使用万用表检测挡位传感器A,在仪表板上OK指示灯亮情况下,测量G54的1号端子与车身之间的电压,正常显示4.88V。使用欧姆档测量连接器3号端子电阻值,显示0.2Ω,再检测该端子的电压只有0.02V,表示该3号端子接地良好。拨动换挡手柄到P挡位置,同时检测连接器G54的2号端子输出电压显示4.87V,再检测与挡位控制器相连接的连接器G56的3号端子的电压,也显示为4.87V,说明传递P挡信息的该线路不存在故障。同理检测传递N挡信息的线路,即拨动换挡手柄到N挡位置,同时检测连接器G54的4号端子输出电压与连接挡位控制器的连接器G56的5号端子的电压是否一致,实际测量均为4.86V,说明传递N挡信息的线路也不存在故障。
再来分析挡位传感器B与挡位控制器之间的电路,如表3所示。其中与挡位传感器B相连的连接器G55的4号端子作用是挡位控制器为挡位传感器B提供5V电源。G55的3号端子与车身接地,两者之间电阻应小于1Ω。操纵换挡手柄打到R挡位置时,G55的1号端子正常情况下相对于车身应输出电压约5V。操纵换挡手柄打到D挡位置时,G55的2号端子正常情况下相对于车身应输出电压约5V。
使用万用表检测挡位传感器B,按下启动按钮,仪表板上OK指示灯亮,测量G55的4号端子与车身之间的电压,其显示4.88V,该线路正常。使用欧姆档测量连接器G55的3号端子电阻值,显示0.14Ω,再检测该端子与车身之间的电压只有0.02V,表示该3号端子与车身接地良好。拨动换挡手柄到R挡位置,同时检测连接器G55的1号端子输出电压显示4.86V,再检测导线另一端的连接器G56的4号端子的电压,也显示为4.86V,说明传递R挡信息的该线路正常。但是检测传递D挡信息的线路发现异常,即拨动换挡手柄到D挡位置,同时检测连接器G55的2号端子相对于车身输出电压是4.88V,再检测与挡位控制器相连的连接器G56的6号端子输出电压却是0.9V,一条导线的两端电压不一样,怀疑传递D挡信息的线路存在故障。
维修人员拆下中控饰板,检查挡位传感器到挡位控制器之间的D挡线路,发现该导线某一处被中控饰板夹住,已破损造成该导线搭铁,挂D挡时,D挡信号没有传递给挡位控制器,车辆无法前进。使用电工胶布包扎破损地方,恢复电路原本的功能,启动车辆,挂上D挡,车辆可以行使,故障完全排除。