汽车日报 汽车日报

当前位置: 首页 » 汽车资讯 »

vechain 比亚迪

汉DM-i/DM-p的意外惊喜:6kW移动电站与80kW升压快充

刚刚看到比亚迪官方发布了汉DM-i/DM-p新出炉的宣传长图,有两个点算是意外惊喜。

最大6kW移动电站外放电功能。最大80kW直流升压充电。 VTOL移动电站

据我目前掌握的情况(也许不完全),比亚迪的新能源车,包括在售的DM-i和EV车型,移动电站都是3kW,对应的电流是16A。例如,我自己的宋PD随车带的放电插排就有一个16A的“空调插座”。如果汉DM-i的移动电站是6kW的,那么对应电流是32A,这个功率基本够一个普通家庭公寓的所有用电设备了。当然,我估计是长续航版的汉DM-i移动电站有这么大功率,毕竟电池有38kWh,够霸道,6kW满功率放电也能撑5个小时。

这么大放电功率,对应的双向充放电机OBC应该是32A的,也就是慢充功率最大可以到7kW。但是,我目前想象不出来汉DM-i随车配的放电插排会是怎样的设计?放电枪没问题,32A是常见规格。电缆肯定要加粗。只是日常用电设备没有这种32A插头,所以,也许插排上会并排设计两个16A插座,能同时带两台空调:)

80kW直流升压充电

申报信息汇总

汉DM-i的短续航版用的电池与现款宋PD一样,是384V/18.3kWh,这与80kW直流升压充电无关。

长续航版汉DM-i/DM-p用的电池是576V/37.6kWh,如果没有升压充电,那么就会像现在的唐DM-i一样,只能用750V快充桩,而无法用500V充电桩。汉DM-i使用的仍然是EHS160,我在2021年5月写过一篇关于升压充电的文章,提到过:

“从原理上说,没有问题,唐DM-i实现升压快充可以使用同样的技术(驱动复用),基本不需要额外的元器件。但是,一个现实的工程障碍可能为,当初EHS电混系统(含新型发卡电机)高度集成化设计,没有为升压充电回路留出接口。从上面原理图中可以看出,至少电机定子绕组的中性点要能引出接线。所以,唐DM-i的升压快充也许要留待下次EHS改型设计时才可能实现。”

我不太确定比亚迪是否这么快就对EHS160进行了改版。如果没有改版,这种升压充电我猜有2种可能实现的方式:

用额外的分立升压回路,鉴于这个功率是80kW,分立升压回路的体积和散热都很成问题,所以这种方案可能性不大。复用后桥电驱,组成升压充电回路。那么长续航版汉DM-i就没有80kW直流升压充电功能了,仅汉DM-p有这个新功能。

对这一点,我很好奇,看看最后我是猜对还是猜错了。

VTOV车对车充电

不管怎样,80kW直流升压快充是一个很彰显实力的技术。一方面,电池不到40kWh,充电功率达到了2C;另一方面,升压快充意味着车辆同时具备对外输出任意直流电压的能力,可以实现VTOV,也就是大功率车对车充电。详细参见我的另一篇文章《比亚迪E平台3.0深度解读(1):什么是驱动复用升压充电?》

汉EV的用户手册上对VTOV有如下描述:

很遗憾,目前比亚迪还未在汉EV上释放这个功能,并且使用这种功能需要特制的电缆。同样,汉DM-p上也不一定能释放这个功能。但是,笔者认为这个功能一旦释放,将会产生巨大的社会效益。因为VTOV不仅仅限于比亚迪车系间的互相充电,比亚迪如果按照充电国标设计这个功能,则几乎所有品牌的电动车都可以通过VTOV充电。

各位可以回想一下,燃油车时代,谁为12V蓄电池亏电特别焦虑过吗?估计很少有,因为周围所有的车都可以为你搭电救援。那么如果你周围的电动车,或者具体点说周围的汉EV或DM-p都可以为你搭电救援,并且充电功率是慢充的10倍,你的里程焦虑会不会减轻一些?

古有滴滴打车,未来也许会有迪迪充电。如果将其视为共享经济的新形态,难道不是一个好商机吗?

蔚来投巨资打造的移动充电车队,会成为历史。

比亚迪E平台3.0深度解读(1):什么是驱动复用升压充电?

E平台3.0发布会后,相关文章和报道已有很多,但内容重复也很多,翻来覆去,拷贝粘贴。笔者看了很久,所有提到驱动复用升压充电技术点的都是一笔带过,不求甚解,所以本文就先挑这块硬骨头啃一啃。

比亚迪的独家秘技

如果拿ocean-X与Model 3对比,无论是前异步后永磁的四驱架构,还是碳化硅器件、宽域热泵温控系统,特斯拉都有,甚至在量产车中的应用还早于比亚迪。智能化这方面就更不用说了,大家心里都有数。至于刀片电池,如果只看材料属性,那么这两家如今都在应用磷酸铁锂,不好分出高下。

暂不论价格,技术层面的差异化竞争,目前肉眼可见只有“驱动复用,升压充电”是比亚迪的独门秘技,特斯拉的超级充电(Super Charge)笔者认为有很大局限。

升压充电的价值和深远意义

想要认识升压充电的价值,就必须先解释一下为何要升压充电?简单概括两点:

现有快充网络的充电桩最高输出电压多数为500V。如果电池包电压高于500V,例如额定600V,想要给电池包充进电能,则需要将充电桩的500V电压在车内升高至600V之上。(人往高处走,电往低处流)

一定会有人抬杠,既然充电桩多数是500V规格,为何要用大于500V的电池包?这是关于电动车是否有必要上800V平台的一个典型悖论:是应该先有800V级别的充电桩后再开发800V平台的电动车,还是先开发800V平台的电动车再等待800V级别充电网络逐步完善?

毋庸置疑,800V平台是电动车发展的方向,除特斯拉外,几乎所有其他新旧造车势力都在各自的新车PPT上描绘了800V平台的蓝图。然而,迄今,国内品牌除比亚迪外,还未见哪家有量产的高压平台产品上市。

这其中一个重要原因恐怕就是除比亚迪外,其他厂家没有合适的升压充电技术。例如某某和某某,都重点宣传过高压快充的卖点,但又都说目前快充网络多是500V充电桩,基础设施不OK。

如此看来,比亚迪升压快充的意义就非常重大了,因为这项技术解决了800V电动车与800V充电网络“先有鸡还是先有蛋”的悖论。800V平台的电动车可以与800V充电网络同步开发建设。 当下,800V平台电动车可以用500V电桩充电;未来,800V平台可以用800V电桩充电。什么都不耽误。

升压充电的重要意义不仅仅在于可以推进向800V平台的过渡与迁移,还有一点恐怕连比亚迪自己都没有意识到。就是这项技术可以推动VTOV(Vehicle to Vehicle)车对车快充补电的普及,这将有效降低电动车出行的里程焦虑,本文将在最后一部分详细阐述。

预备知识:升压与降压电路

写这篇文章最难的就是本节,想读懂全文就必须了解什么是升压电路与降压电路。因为很多读者恐怕连交流和直流的区分都还没有概念,所以想用区区几百字解释清楚这个知识点是一个极大的挑战。

首先说明:下面介绍的是直流升压和降压电路,因为电池包的电压是直流电压,快充桩的电压也是直流电压,所以升压充电是指直流电压的变换。

为什么不用变压器?因为交流电才用变压器。

有两条基本的电学知识是最基础的出发点,相信各位在中学阶段都学过:

电感元件的电流不能突变;电容元件的电压不能突变。

简而言之,基于电感和电容的基本特性,用半导体开关及二极管就可以搭出升压或降压电路。这两种电路的组成元器件是一样的,只不过排列位置不同。下图是笔者亲手绘制,为便于手机阅读,特地变形为竖版。(希望各位转载搬运的朋友尊重版权,勿消水印。)

E平台2.0时代的升压充电

其实,比亚迪很早就开始了升压充电技术的应用,笔者掌握的资料不一定全面,仅就常见量产车型而言,至少可以追溯到五年前的e5。e5长续航版的电池包电压为633.6V,如果使用500V充电桩,则必须升压充电。

比亚迪e5铭牌

这次E平台3.0的发布会上,廉总的演讲中提到了之前的解决方案,是使用独立的升压电路。从下面这张PPT上可以看出,独立的升压电路包括两个IGBT半导体开关(含续流二极管)和一个电感及电容,这些器件独立于电驱(或电控)三合一,分开安装。

那么问题来了,假设充电倍率为1C,即充电功率40kW左右,若升压电路的损耗为2.5%,则损耗发热量约1kW,相当于一个小电暖气,散热如何处理?!除了散热,那个额定电流至少75A的电感体积必定也不小,所需安装空间也会非常棘手。总之,独立升压电路的技术方案在工程设计上是一个噩梦!不知道那些e5的车主还好吗?

E平台3.0的升压充电

虽然汉EV也是E平台2.0时代的产品,但作为集大成的旗舰车型,汉EV使用了不同的方案。各位应该还记得汉EV推出时一个主打卖点就是升压充电,为何e5时代不宣传升压充电,到汉EV才开始宣传?笔者认为,之前的独立升压方案实在拿不出手,不够成熟,汉EV使用了“驱动复用升压充电”方案后,比亚迪才觉得可以放心在市场上推广了。

经过近1年、超11万辆汉EV的市场实证,现在这种升压充电方案经受住了考验,可以在E平台3.0上大规模普及了。

驱动复用升压充电原理分析

笔者在4个月前写过一篇《比亚迪汉EV升压快充电路级原理分析。唐DM-i为何只能用700V快充?》,其中有几幅图,本文再复用一下。

先看一下汉EV的电机控制主回路,如下图。这里面有IGBT、二极管,有电感(电机定子绕组),有电容,独立升压电路也是这些元器件,为何不复用一下呢?反正充电时车是静止的,电驱系统又不工作。

驱动复用的含义正是如此。比亚迪的充电回路设计的很巧妙,没有将充电桩直流输入的电源DC+和DC-直接接到电池包两根直流母线上,而是利用了IGBT逆变桥及电机定子绕组,搭出了一个Boost升压电路(见下图蓝色线路部分)。图中接触器断开时,这就是一个普通的电机驱动回路;接触器闭合时,这就是一个充电回路。这种设计的好处是,三相IGBT、续流二极管和电机绕组都可以并联在一起使用,功率足够大(前电机163kW),并且不需要额外的散热回路和安装空间。

接500V充电桩时,左半桥IGBT断续开闭,右半桥IGBT封锁,升压充电;接750V充电桩时,左右半桥IGBT都封锁,充电电压由充电桩控制。

至于500V充电桩与750V充电桩的切换控制条件,可以通过快充接口的CAN总线在充电握手阶段判断。

从廉总的PPT可以看出,笔者之前绘制的这张电路图与官方的图思路一致,只是在桩侧的接触器和电容位置有些差异。图中绿线为电流走向,绿色虚线代表电流在此通路断续流过。

升压充电技术的难度

说实话,笔者最初想明白比亚迪这个设计方案时,曾拍过大腿,心中怒赞真TM的巧妙啊!

比亚迪花了5年多的时间,从独立升压方案进化到驱动复用升压方案。如果有人问什么是一个传统新能源厂商的技术积累?这~就是技术的积累!难不难都写在岁月里。

假定现在思路都有了,其他厂家也追随这种设计,它们要迈过三个门槛:

第一,要考虑专利保护;第二,思路变为产品的设计与测试要花时间,比亚迪用了5年多;第三,这是系统性设计,需要电池、电控、冷却等子系统全盘考虑,目前只有比亚迪这些系统部件都自己研发制造。

所以,其他厂家走这条路,难度很大!很多厂家800V平台的产品迟迟落不了地,笔者认为这是一个重要原因。扯成本、扯产业链来打掩护,都扯远了。

驱动复用与VTOV充电

驱动复用的意义还有一个点从未有人谈起,我在4个月前那篇文章中卖了个关子,没有挑明细说。今天作一个详细阐述。

复用同一个电驱系统,只要改变控制方法,就可以搭出一个Buck降压电路。如下图所示,绿线代表电流走向,绿色虚线代表断续导通。这个降压电路可以让输出端输出任意小于电池包570V的直流电压。

当一台电动车可以输出任意直流电压时,它就成为了一个移动充电桩。车辆对外放电有两种模式:

VTOL(Vehicle TO Load),这就是普通的外放电功能,可以输出220V交流电。VTOV(Vehicle TO Vehicle),这是车对车放电模式,可以输出受电车辆需要的直流电压。

汉EV的用户手册上对VTOV有如下描述:

很遗憾,目前比亚迪还未在汉EV上释放这个功能,并且使用这种功能需要特制的电缆。但是,笔者认为这个功能一旦释放,将会产生巨大的社会效益。因为VTOV不仅仅限于比亚迪车系间的互相充电,比亚迪如果按照充电国标设计这个功能,则几乎所有品牌的电动车都可以通过VTOV充电。

各位可以回想一下,燃油车时代,谁为12V蓄电池亏电特别焦虑过吗?估计很少有,因为周围所有的车都可以为你搭电救援。那么如果你周围的电动车,或者具体点说周围的汉EV都可以为你搭电救援,并且充电功率是慢充的10倍,你的里程焦虑会不会减轻一些?

古有滴滴打车,未来也许会有迪迪充电。如果将其视为共享经济的新形态,难道不是一个好商机吗?

蔚来投巨资打造的移动充电车队,会成为历史。

总结

E平台3.0的驱动复用升压充电技术有两个重要价值:

推进电动车向800V平台的过渡与迁移。让VTOV移动快充的普及成为可能,缓解里程焦虑,加快社会车辆电动化转型。

为比亚迪的工程师们鼓掌!

比亚迪e5 高压电控总成的组成-原理

一.比亚迪e5车高压电控总成的组成

2015年至2018年产的比亚迪e5车采用第2代e平台,高压电控总成安装在车辆的前舱。

高压电控总成的安装位置

1、高压电控总成的组成

高压电控总成是将纯电动汽车的双向交流逆变式电机控制器(VTOG)、车载充电器(OBC)、高压配电箱和DC-DC转换器这4个高压电控装置合为一体,又称“高压四合一”。

(1)VTOG控制器

该控制器为电压型逆变器,利用IGBT将直流电转化成交流电,其主要功能是通过收集挡位信号、加速踏板信号、制动踏板信号等来控制电机,根据不同工况控制电机的正反转、功率、扭矩、转速等,即控制电机的前进、倒退、维持车辆的正常运转。此外,还具备充电控制功能,能进行交直流转换,双向充放电控制。该控制器总成分为上、中、下3个单元,上、下层为电机控制单元和充电控制单元,中间层为水道冷却单元。

(2)车载充电器

车载充电器是指固定安装在纯电动汽车上的充电器,根据高压电池管理系统(BMS)提供的数据,能动态调节充电电流或电压参数,执行相应的动作,完成充电过程。

(3)高压配电箱

高压配电箱的功能主要是将高压电池的高压直流电供给整车高压电器,接收车载充电器或非车载充电器的直流电,给高压电池充电,同时还具有电流检测、漏电监测等其他辅助检测功能。

(4)DC-DC转换器

DC-DC转换器是电动汽车动力系统中很重要的组成部分,通过DC-DC转换器给低压电池充电,与低压电池一起为低压电器系统供电。

2、 高压电控总成的功能

(1)高压电控总成的外部接口

高压电控总成外部接口分为高压接口和低压接口两部分。高压接口有电池包高压直流输入接口(直流母线正极接口、直流母线负极接口)、电机三相(三相交流输出)接口、交流充电(输入交流)N与L1相接口、交流充电(输入交流)L2与L3相接口、直流充电输入接口、空调电动压缩机接口、加热器PTC接口。低压接口有DC-DC输出接口、VTOG控制器低压接口、高压配电箱低压控制接口。

高压电控总成前侧

高压电控总成左侧

高压电控总成后侧

高压电控总成右侧

(2)高压电控总成的内部模块布局

高压电控总成内部主要部件有VTOG控制器(控制板、IGBT驱动板、IGBT)、电容(660 μF母线电容总成、70 μF、25 μF)、接触器、霍尔电流传感器、车载充电器总成、电感及电感温度传感器、继电器电路板模块等。

B)下侧

C)上侧爆炸图

高压电控总成内部模块布局

(3)高压配电箱

高压配电箱主要由接触器、霍尔电流传感器、预充电阻、高压电池包正负极输入接口组成。接触器由BMS控制,用于充放电。

高压配电箱组成

(4)漏电传感器

本车采用直流漏电传感器。当高压系统漏电时,漏电传感器发送信号给BMS,BMS接收到漏电信号后根据漏电情况马上报警或断开高压系统,以防止对人或物品造成伤害和损失。

漏电传感器

(5)VTOG控制器

VTOG控制器由上、下两块电路板组成,上方为控制板,下方为IGBT驱动板。IGBT驱动芯片采用1ED020I12FA2芯片。IGBT总成固定于IGBT驱动板上,其控制极G、控制极E通过弹簧与电路板上的电路连接,该总成上还有用于检测其工作温度的温度传感器(热敏电阻)。

此车VTOG控制器预留有车辆对放电排插供电功能(VTOL)及车辆对车辆放电功能(VTOV),可通过转向盘上的按键进行设置。

VTOG控制器上控制板(正面)

VTOG控制器上控制板(背面)

IGBT驱动板

VTOG控制器主要有驱动控制与充电控制两大功能。驱动控制(放电)是采集加速踏板、制动踏板、挡位、旋变等信号,实现前进、倒车、减速或制动时正反转发电功能;具有高压输出电压和电流控制功能;具有电压跌落、过流、过温、IPM过温、IGBT过温保护、功率限制、扭矩控制限制等功能;具有电控系统防盗、能量回馈控制、主动泄放、被动泄放控制等功能。充电控制具有交直流转换,双向充放电控制功能;具有自动识别单相、三相相序并根据充电电流控制充电方式,根据充电设备识别充电功率控制充电方式,根据车辆或其他设备请求信号控制车辆对外放电的功能;具有断电重启功能,即在电网断电后又供电时,可继续充电的功能;原版的高压四合一车型在直流充电时,具有直流充电升压功能,从而可使用一些输出电压低于比亚迪e5车的通用直流充电柜进行充电。VTOG控制器还包括CAN通讯、故障处理记录、在线CAN烧写及自检等功能。显然,进行驱动控制时电机的三相接触器处于接通状态,而充电控制时电机的三相接触器处于切断状态。

(6)DC-DC转换器

DC-DC转换器及DC低压输出端子。DC低压输出端通过正极熔丝盒给低压起动铁电池充电并给整车低压电器系统供电。

DC-DC转换器及低压输出端子

(7)车载充电器

它用于功率不高于3.3 kW的单相交流充电设备充电的场合,适用的充电设备包括便携式充电器、3.3 kW壁挂式充电盒。使用功率大于3.3 kW的单相或三相交流充电设备充电则要经过VTOG控制器进行。拆下上盖的车载充电器,可以看出其有两块电路板,需拆下车载充电器内部的上部电路板后,再拆下变压器与下部电路板。

拆下上盖的车载充电器

车载充电器壳体及下部电路板

(8)电容

该车高压电路中使用的电容为薄膜电容。薄膜电容的耐压可以达到1000 V DC以上,改善了电容的防潮性和抗温度冲击能力,工作环境温度可达105 ℃~125 ℃。主要由母线电容总成、直流充电升压器的70 μF电容及3个25 μF电容总成等组成。

薄膜电容

(9)霍尔电流传感器

高压电控总成中采用了霍尔电流传感器来检测电流。为检测电流方向,有的采用了正、负电源供电。一般需要在线检测霍尔电流传感器的性能好坏,先检查其是否有“+15 V”“-15 V”的电源,若电源正常,则测试霍尔信号(“1 V”对应100 A)并与电源管理器的当前电流进行对比,从而判断霍尔电流的正常与否。

霍尔电流传感器

(10)复合母排。高压电控总成中采用了复合母排技术,具有电气安全性高、电磁辐射小、传导发热小、集成度高等优点。

复合母排

2.高压电控总成的工作原理

2.1 高压安全保护

(1)碰撞断高压电保护

如果车辆发生碰撞,BMS接收到安全气囊展开信号后,通过断开系统主接触器来切断高压电。

(2)漏电断高压电保护

漏电传感器主要监测与高压电池相连接的正极母线或负极母线与车身底盘间的绝缘电阻,来判定高压系统是否存在漏电。漏电传感器将漏电数据信息通过CAN通讯发送给BMS和VTOG控制器,然后采取相应保护措施。漏电判定及措施见表1所列。

(3)高压互锁保护

高压互锁保护分为结构互锁和功能互锁两部分。结构互锁是指车辆的主要高压连接器均带有互锁回路,当其中某个连接器带电断开时,BMS便会检测到高压互锁回路存在断路,为保护人员安全,将立即进行报警并断开主高压回路电气连接,同时激活主动泄放。功能互锁是指当车辆进行充电或插充电枪时,高压电控系统会限制车辆不能通过自身驱动系统进行驱动,以防发生安全事故。

2015年产比亚迪e5车没有安装维修开关,2015年后产的比亚迪e5车安装维修开关,其高压互锁电路示意图如图所示。

表1 漏电判定及措施

高压连接器的互锁保护

2015年后产的比亚迪e5车高压互锁电路示意图

安装维修开关的高压互锁回路依次将BMS的端子BK45(A)/1、PTC模块的端子B52/1和端子B52/2、高压电控总成的端子B28(B)/22和端子B28(B)/23、高压电池包的端子KxK51/29和端子KxK51/30、BMS的端子BK45(B)/7串联起来。高压电控总成的高压互锁回路经母线“-”连接器、母线“+”连接器、PTC线束连接器、空调压缩机线束连接器依次串接起来。

(4)主动泄放保护

5 s内把预充电容电压降低到≤60 V,迅速释放危险电能,主动泄放模块的泄放电阻为7.5 Ω(标准)。

(5)被动泄放保护

2 min内把预充电容电压降低到≤60 V,被动泄放是主动泄放失效的二重保护。被动泄放电阻(标准75 kΩ)直接接于660 μF高压电容器正负极两端,上电后一直处于耗电状态,但电流很小,损耗可忽略不计。

2. 上电过程

车身控制模块(MICU)采集到“制动踏板”与“起动按钮”命令后,由VTOG控制器与无钥匙系统模块(Keyless-ECU)进行防盗认证,认证成功后吸合IG1继电器并发送“起动开始”报文,通过网关发送给VTOG控制器和BMS。BMS得电且收到报文后,BMS先吸合预充接触器并进行自检,检查是否存在严重欠压、严重过压、严重漏电、严重过温、接触器烧结、高压互锁锁止等异常情况,如果检测存在异常情况则上电失败,如果未检测到异常情况,则吸合负极接触器,高压电池的高压电经过与预充接触器串联的限流电阻加载到VTOG控制器母线上,然后判断预充是否成功。VTOG控制器检测到母线上的电压达到高压电池额定电压的设定值时,通过CAN通讯向BMS反馈预充满信号,如果不预充直接接通接触器,由于母线电容在通电瞬间相当于短路状态,会使过大电流流过接触器,因而可能产生接触器烧结等不良后果,当无严重漏电信号、直流母线电压达到设定值且直流低压系统无低压警告时,BMS判定预充成功,BMS控制主接触器吸合,断开预充接触器,点亮OK灯,上电成功。

3、 驱动电机时的原理

比亚迪e5车的高压电控总成有多种版本,根据年款等有所变化,分原版高压电控总成与简版高压电控总成。

比亚迪的漏电传感器有2种,一种接于正极,一种接于负极,两者不可互换。驱动电机时,3个电机接触器闭合,高压电经IGBT逆变桥(6个绝缘栅双极晶体管在ON和OFF间切换)变换出交流电并输送给电机,利用旋转变压器技术和空间矢量脉宽调制(SVPWM)控制算法来控制电机正转(前进)或反转(倒车)。

4、 再生制动时的原理

车辆减速或制动时,电机由车轮驱动,再生制动功能使电机起到发电机的作用,将电能存储到高压电池中。

5、 单相交流充电原理

当使用便携式充电器或功率不大于3.3 kW的交流充电器进行充电时,VTOG控制器能自动识别出充电设备,并唤醒车载充电器,激活交流充电正极接触器,对高压电池进行充电。

当使用功率大于3.3 kW的交流充电器进行充电时,在N相线与B相线(对电机一侧而言)间增加单相切换接触器,VTOG控制器收到单相充电指令时,控制单相切换接触器吸合,使B相线和N相线连接,由A相、B相作为L1相、N相线使用,充电枪连接插头需使用专用连接插头或其L2相、L3相不做使用的连接插头。当VTOG控制器收到单相充电指令时,控制单相/三相切换接触器其中的2个接触 器闭合,使三相充电插座的L1相、L2相与单相充电插座的L1相、N相线导通。

高压电控总成内部线路图

6、 三相交流充电原理

系统收到充电指令时,将BMS允许的最大充电电流、供电设备最大供电电流和充电连接装置的额定电流相比较,VTOG控制器判断这三者中最小的充电电流,自动选择充电相关参数,同时系统对供电设备输送的交流电进行采样,VTOG控制器通过采样值计算出交流电电压有效值,再通过捕获来确定交流电频率,根据电压有效值和频率判断出交流电电制,根据电网电制选取控制参数。确定控制参数后,VTOG控制器控制继电器板的三相交流预充继电器和滤波电容继电器吸合,对直流侧母线电容进行充电,当电容电压达到规定值后吸合单相/三相切换接触器,同时断开继电器板的三相预充继电器,此时VTOG控制器发送PWM信号,控制双向DC/AC模块对交流电进行可控整流,再根据高压电池电压,对电压进行调节,最后把直流电输送给高压电池。在此过程中,VTOG控制器根据预先选定的目标充电电流和电流采样反馈的相电流,对整个系统进行闭环的电流调节,实现对高压电池进行充电。

7、 直流充电原理

比亚迪e5车除了可采用交流充电方式外,还具有直流充电的快速充电方式。

直流充电主要是通过充电站的充电柜将直流高压电直接通过直流充电口给高压电池充电。

当使用的直流充电柜最大输出电压小于高压电池电压时,直流充电升压器工作,将下桥臂的增压IGBT置于ON,使直流充电柜的电力为电感充电。电感存储了电能,将下桥臂的增压IGBT置于OFF,电感产生感应电动势,使电压升至合适的充电电压,电流持续从电感中流出,通过上桥臂IGBT流入母线电容和高压电池。

免责声明:此讯息系转载自互联网其它媒体,我们登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文中陈述文字和内容未经证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,文章内容仅供参考!如果您不希望我们转载您的作品,请和我们联系处理,谢谢!

未经允许不得转载: 汽车日报 » vechain 比亚迪

相关文章

themebetter

contact