汽车日报 汽车日报

当前位置: 首页 » 汽车资讯 »

比亚迪fo共振大

扬声器单元的阻抗(Impedance)

扬声器单元的阻抗包括直流阻抗(DCR/Re)和交流阻抗(ACR)

a.指直流阻抗:即DCR(Re),不受频率的影响(静态)。亦即音圈线的阻抗。它在阻抗特性上表现为一条直线。

b.交流阻抗:即ACR,是指经过频率测定之公称阻抗或叫额定阻抗(动态)。

业余爱好者可用替代法测量扬声器单元的额定阻抗,按下图用恒流法去测量扬声器单元的额定阻抗,为了满足信号源为恒流源的测量要求,音频信号发生器的输出端要串一只阻值至少大于或等于被测扬声器额定阻抗值10倍的大电阻R。调节音频信号发生器的信号旋钮,使输出信号频率从20HZ开始起缓慢上升,并联在被测扬声器两端毫伏表的电压值在达到第一个最大值后即开始下降,当毫伏表的电压值降至最低并开始上升时,停止改变音频信号发生器的信号频率,在保持音频信号发生器输出电压不变的前提下,记下毫伏表上的电压值。用无感电阻箱代替被测扬声器单元,反复调节电阻箱的阻值,当毫伏表上的电压值恢复到原来的电压值时,这时电阻箱的阻值就是被测扬声器单元的额定阻抗值。

扬声器单元的阻抗特性是指将电信号加到扬声器输入端子,如果在保持输入电压怛定不变的条件下,变更信号频率,扬声器的输入阻抗会有很大的变化,在图表上表现为一条曲线。把曲线上高于Fo(最低共振频率)时的最小阻抗值定义为扬声器的公称阻抗(标准阻抗),单位为Ω。公称阻抗公差一般为±15%,稍严一点为±5~10%。

产生阻抗曲线的原因:扬声器的音圈除了有它的直流阻抗外还有一定的电感。当音频信号输入扬声器时扬声器的音圈即在磁回间隙中上下振动由于音圈的电感作用,这时在音圈中会感应出一个与音频信号反向的感应电动势,这个与音频信号反向的感应电动势会削弱音圈中的电流,从而使音圈的阻抗加大,随着音频信号的上升这种效应会越来越大,这种使扬声器单元的阻抗随频率变化的规律称为扬声器的阻抗特性。一条完整的阻抗特性由音圈的直流电阻、音圈的感抗以及音圈在磁隙中上下运动时所产生的感应电动势这三部分组成。

使电动式扬声器的鼓纸发生振动的力,即磁场对载流导体的作用力,其大小为

F=BiL

式中,B:为磁场中的磁感应强度(韦帕/米2或Wb/m2),i:为通过线径的电流(A),L:为音圈导线在磁场中的长度(m),F:为磁场对音圈的作用力(牛顿)。

然而一旦音圈受力运动,就会切割磁隙中的磁力线,根据法拉第电磁感应定律,音圈在磁隙中运动会产生感应电动势,这个效应称为电动式扬声器的电效应,其感应电动势的大少为

Σ=BLV

式中,V:为音圈的振动速度(m/s),Σ:为音圈的感应电动势(伏特V)。

电动式换能器的力效应和电效应总是同时存在,相伴而生的,正因为电效应的存在,对扬声器的阻抗就产生了影响,出现了阻抗曲线。

有些人近似的把DCR与ACR用如下式表示 ACR=1.08~1.2DCR .

检测ACR与DCR可用阻抗测试器。(

测量单元的阻抗曲线可用LMS或CLIO等,上图是一扬声器单元的阻抗曲线。

#电声基础##扬声器#

超全的物理考点汇总(十八)

十一 下 阻尼振动 受迫振动

知识点二| 受迫振动、共振

1.受迫振动

(1)驱动力:作用于振动系统的周期性的外力.

(2)受迫振动:振动系统在驱动力作用下的振动.

(3)受迫振动的频率:做受迫振动的系统振动稳定后,其振动频率等于驱动力的频率,跟系统的固有频率没有关系。

2.共振

(1)定义:驱动力的频率等于振动物体的固有频率时,受迫振动的振幅最大的现象.

(2)条件:驱动力频率等于系统的固有频率.

(3)特征:共振时受迫振动的振幅最大.

(4)共振曲线:如图所示.表示受迫振动的振幅A与驱动力频率f的关系图象,图中f0为振动物体的固有频率.

【判断】

1.受迫振动的频率等于振动系统的固有频率.(×)

2.驱动力频率越大,振幅越大.(×)

3.生活中应尽量使驱动力的频率接近振动系统的固有频率.(×)

【思考】

1.洗衣机启动和停止时,随着电机转速的变化,有时洗衣机会振动得很厉害,这是什么原因?

【提示】当洗衣机电机转动的频率等于洗衣机的固有频率时,发生了共振现象,这时洗衣机振动得很厉害.

2.要防止共振,需要采取什么措施?

【提示】尽量使驱动力的频率与固有频率间的差距增大.

1.自由振动、受迫振动及共振的比较

振动类型

自由振动

受迫振动

共振

受力情况

仅受回复力

周期性驱动力

周期性驱动力

振动周期或频率

由系统本身性质决定,即固有周期或固有频率

由驱动力的周期或频率决定,即T=T驱或f=f驱

T驱=T固或f驱=f固

振动能量

振动物体的机械能不变

由产生驱动力的物体提供

振动物体获得的能量最大

常见例子

弹簧振子或单摆

机械运转时底座发生的振动

共振筛、声音的共鸣等

2.共振曲线的理解和应用

(1)两坐标轴的意义:

纵轴:受迫振动的振幅,如图所示.

横轴:驱动力频率.

(2)f0的意义:表示固有频率.

(3)认识曲线形状:f=f0,共振;f>f0或f<f0,振幅较小;f与f0相差越大,振幅越小.

(4)结论:驱动力的频率f越接近振动系统的固有频率f0,受迫振动的振幅越大,反之振幅越小.

4.如图所示为受迫振动的演示装置,当单摆A振动起来后,通过水平悬绳迫使单摆B、C振动,则下列说法正确的是( )

A.只有A、C摆振动周期相等

B.A摆的振幅比B摆的小

C.B摆的振幅比C摆的小

D.A、B、C三摆的振动周期相等

E.B、C两摆振动时的振幅与其摆长有关,而周期与摆长无关.

解析:当单摆A振动起来后,单摆B,C做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A错误,D正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项B错误,选项C、E正确.

答案:CDE

5.如图所示为两个单摆受迫振动的共振曲线.两个单摆的固有周期之比为TⅠ∶TⅡ=________.若两个受迫振动分别在月球上和地球上进行,且摆长相等,则图线________是月球上的单摆的共振曲线.

解析:由共振曲线及共振的条件可知,Ⅰ和Ⅱ的固有频率分别为0.2 Hz和0.5 Hz,周期之比TⅠ∶TⅡ=5∶2.当摆长相等时,重力加速度越大,频率越大,月球表面重力加速度小于地球表面重力加速度,故图线Ⅰ是月球上的单摆的共振曲线

答案:5∶2Ⅰ

6.如图所示,在曲轴A上悬挂一个弹簧振子,如果转动把手,曲轴可以带动弹簧振子上下振动.问:

(1)开始时不转动把手,而用手往下拉振子,然后放手让振子上下振动,测得振子在10 s内完成20次全振动,振子做什么振动?其固有周期和固有频率各是多少?若考虑摩擦和空气阻力,振子做什么振动?

(2)在振子正常振动过程中,以转速4 r/s匀速转动把手,振子的振动稳定后,振子做什么运动?其周期是多少?

(2)由于把手转动的转速为4 r/s,它给弹簧振子的驱动力频率为f驱=4 Hz,周期T驱=0.25 s,故振子做受迫振动.振动达稳定状态后,其频率(或周期)等于驱动力的频率(或周期),而跟固有频率(或周期)无关.即f=f驱=4 Hz,T=T驱=0.25 s.又因为振子做受迫振动得到驱动力对它做的功,补偿了振子克服阻力做功所消耗的能量,所以振子的振动属于受迫振动.

答案:(1)简谐运动 0.5 s2 Hz 阻尼振动

(2)受迫振动 0.25 s

【名师点津】1.分析受迫振动的方法

(1)在分析受迫振动时,首先要弄清驱动力的来源.

(2)受迫振动的频率等于驱动力的频率,与物体的固有频率无关,因而首先应确定驱动力的频率.

(3)当驱动力的频率等于固有频率时,发生共振.

2.改变受迫振动的振幅的方法

当f驱=f固时,振幅最大.若改变受迫振动的振幅,可采取两种方法:

(1)改变给予振动系统周期性外力的周期,即改变驱动力频率.

(2)了解影响固有频率的因素,改变固有频率.

电机的振动分析:从振动原理到故障诊断

电机的故障和诊断技术与电机的工作原理、运行方式、具体结构密切相关。无论是何种电机,其内部按能量转换的原理分为三个环节(或称系统):电气环节、磁耦合环节、机械环节。因为这三个环节的能量形式不同,所应用的故障诊断技术相应地有所差异。电气环节的故障主要通过对电压、电流的各种测量和分析来诊断,例如绝缘材料的老化,通过测量漏地电流来判定等等。

1

电机类型特点与测定标准

1

电机的主要部件

定子。是输入电功率,产生磁场的静止部件。对于交流电机,通常定子磁场是旋转的。对于直流电机,定子磁场是静止的。

转子。是产生一个与定子磁场相对运动的磁场,并输出机械功率的重要部件。所承受的电磁力转为输出的扭矩,因此往往要承受较大的机械应力。

集电环和换向器。是构成旋转部分导电,建立相对运动磁场的滑动接触机构。

轴承装置。是支撑转子旋转,保持定子、转子相对位置的机械结构。

2

电机的类型与工作原理的区别

电机的两个磁场均由直流励磁产生,则为直流电机;

电机的一个磁场由直流励磁产生,另一个由交流电流产生。为使这两个磁场相对静止,直流励磁磁场相对交流电产生的旋转磁场必须严格同步,这就是同步电机。

电机的两个磁场分别由不同频率的交流电流产生,则为异步电机。

2

电机振动的测量与判定标准

电机振动测定是指电机在制造厂出厂试验或试验室内的振动研究试验、检修后现场试验时的电机振动水平的准确测量,因此,对于电机的安装条件、测试仪器、测点装置、测量要求等都作了规定。

这种测定的目的:

为了确定电机振动初始状态时的振动水平,判定这台电机出厂时或投入运行时振动值是否符合有关标准的规定;为以后电机异常振动的诊断提供初始的参照数据。因此电机振动的测定,其目的和方法均与电机异常振动诊断有所区别。

1

电机振动有关标准

GB/T 10068-2020《轴中心高为56mm及以上电机的机械振动 振动的测量、评定及限值》(国家标准)IEC34—14《中心高为56mm及以上旋转电机的振动——振动烈度的测量、评定及限值》(国际电工协会颁布)ISO2372《转速从10r/s机器的机械振动——评定标准的基础》(国际标准化组织颁布)ISO3945《转速10r/s机器的机械振动——在运行地点对振动烈度的测量和评定》(国际标准化组织颁布)VDI2056《机器的机械振动评价标准》(德国标准)

2

电机振动的测定方法

测量值的表示方法

不同转速范围的电机,其测量值的表示方法是不同的。国家标准规定,对转速为600~3600r/min的电机,稳态运行时采用振动速度有效值表示,其单位mm/s。对转速低于600r/min的电机,则采用位移振幅值(峰—峰值)表示,其单位为mm。

对测量仪器的要求

仪器的频率响应范围应为10~1000Hz,在此频率范围内的相对灵敏度以80Hz的相对灵敏度为基准,其他频率的相对灵敏度应在基准灵敏度+10%~-20%的范围以内,测量误差不超过±10%。测量转速低于600r/min电机的振动时,应采用低频传感器和低频测振仪,测量误差应不超过±10%。

电机的安装要求

弹性安装。轴中心高为400mm及以下的电机,测振时应采用弹性安装。刚性安装。对轴中心高超过400mm的电机,测时应刚性安装。

电机在测定时的状态

电机的测振应在电机空载状态下进行。

图1 小型电机测点布置

图2 端盖轴承电机的测点布置

图3 机座式轴承电机的测点布置

3

电机振动的限值

根据国家标准GBl0068.2-88《旋转电机振动测定方法及振动限值》的规定,对不同轴中心高和转速的单台电机,在按GBl0068.1规定的方式测定时,其振动速度有效值应不超过表1的规定。

表1 电机振动速度有效值的极限标准(mm/s)

3

电磁耦合系统的振动原理

1

基频磁通的电磁振动

在电机气隙中磁通密度是沿着转子的圆周的空间而随着时间按正弦波分布,可以用下式表示:

由于磁通密度的作用力与磁通密度B的平方成正比:

根据上式可知基波电磁力具有以下特点:

频率为电源频率的两倍,即2f=100Hz;以正弦波规律在圆周上分布;随时间以角速度ω回转。

基波电磁振动:

空气隙长度和磁路不平衡时;一次电压不平衡时;转子绕组不平衡(断条和接触不良)时。

图4 基波电磁力分布

这一振动,在转子受椭圆形电磁力的两极电机中特别明显地表现出来。图4表示了基波电磁力F的圆周方向的分布情况。

二倍电源频率的振动,它是电机中的主要振动分量之一,尤其是在大型电机中,由于定子的固有频率较低,这种频率的振动分析和研究显得特别重要。

基波电磁力不仅作用于转子,也同时作用于定子。是造成定子槽内线包松动等故障的原因之一。

2

高频磁通的槽振动

由于槽的磁导率变化等原因,产生高频槽振动,在它引起的槽齿谐波中,特别要注意的频率成分是fk:

根据K值,电磁力的各阶模态呈如图5所示的形状。

图5 电磁力的各阶模态

这种电磁力是一种径向力波(又称旋转波),并且是单位面积上的力,当这些力波频率以及其阶次与定子对应的固有频率及其模态阶次接近或一致时,将发生共振效应,此时,电机的振动和噪声将特别大。

例如,一台四极电机,P=2,转子的槽数ZR =40,定子槽数ZS =48,先计算其模态阶数K:

图6 交流感应电机(P=2,ZR =40,ZS=48)的声音频谱图

图6是对这台电机在距其一米的位置,用电容式传声器测试的声音信号的频谱。其中,fk0=1000Hz,fk1=1100Hz的频率成分能明确地看出来,此时,前述的fk1=1100Hz是占主要的,而fk2=900Hz则看不出来。

4

直流及同步电机的电磁振动

直流电机的主磁极和转子绕组之间作用着半径方向的电磁力F(x,t)——这是振动的原因,它可用下式表示:

图7 电磁力F(x,t)在圆周上的分布——振型模态

图7 电磁力F(x,t)在圆周上的分布——振型模态这个力F(x,t)在空间上以余弦波cos(μZRx)在圆周上分布,圆周上具有的余弦波数根据μ的值如图7所示分布。并保持这种分布形状以槽角速度(μZRωr)旋转,形成激振力引起定子振动。

定子根据μ的值产生伸缩模态、弯曲模态、椭圆模态、三角形模态而变形。

直流电机主要的激振力与槽频率fz:

这个振动电磁力F(x,t)在时间上面的公式第二项看,是用cos(μZRωrt)表示的余弦波,因此,作为振动频率体现出的成份是下式的槽频率fz。

直流电机主要的激振力为这个fz和其高次谐波。

当槽数ZR=75,极对数2P=6时,

N=300 rpm时,fz=375 Hz;N=1200 rpm时,fz=1500 Hz

对于同步电机的电磁噪声和振动频率,它有一个大的特点,就是与电网频率成整数倍的关系。在同步电机中,有二类径向力波引起的振动必须注意:

其一是二倍电网频率的振动;其二是定、转子谐波磁场相互作用,而产生的径向力波引起的振动。

对于直流电机的故障特征可以归纳为以下几条:

如果转频fr 的振动很明显,则有不平衡、轴弯曲等机械异常。如果2xfr 振动明显,则有不对中等安装方面的异常。槽频率fz以及边频带fz±fr 的振动明显,则有包括电路异常的电气故障的可能。如fz和fn接近,则设计不合理。高频fc成分明显时,线圈绝缘磨损或楔松动。

5

电机的故障特征

1

定子异常产生的电磁振动

电机运行时,转子在定子内腔旋转,由于定、转子磁场的相互作用,定子机座将受到一个旋转力波的作用,而发生周期性的变形并产生振动。

由于定子三相绕组产生的是一个旋转磁场,它在定、转子气隙中以同步速度n0旋转。若电网频率为f0,则同步速度n0=60 f0/P。因此,作用在机座上的磁拉力不是静止的,而是一个旋转力,随转子旋转而转动,机座上受力部位是随磁场的旋转而在不断改变位置。从(图8c-e)中可以看出,当旋转磁场回转一周,磁拉力和电磁振动却变化两次。

图8 电磁振动发生机理

a) 2极电机定、转子和磁通 b) 定子所受电磁力和旋转力波

c) 旋转磁场波形 d) 磁拉力变化波形 e) 电磁振动的波形

电机磁场是以同步速度n0在旋转,则其磁场交变频率与电网频率相同,为f0。而其电磁力的频率和机座振动频率由图8b中可以看出,由于旋转磁场的磁极产生的电磁拉力是每转动一圈,电磁力交变P次。

因电磁振动在空间位置上和旋转磁场是同步的,定子电磁振动频率应为旋转磁场频率(f0/P)和电磁力极数(2P)之乘积2f0,也就是2倍的电源频率。由此可知,电机在正常工作时,机座上受到一个频率为电网频率2倍的旋转力波的作用,而可能产生振动,振动大小则和旋转力波大小和机座刚度直接有关。

2

定子电磁振动异常的主要原因:

定子三相磁场不对称。如电网三相电压不平衡,因接触不良造成单相运行,定子绕组三相不对称等原因,都会导致定子磁场的不对称,而产生异常振动。

定子铁心和定子线圈松动,将使定子电磁振动和电磁噪声加大,在这种情况下,振动频谱图中,电磁振动除了2f0的基本成份之外,还可以出现4f0、6f0、8 f0的谐波成分。

电机座底脚螺钉松动,其结果相当于机座刚度降低,使电机在接近2f0的频率的范围发生共振,因而使定子振动增大,结果产生异常振动。

3

定子电磁振动的特征:

振动频率为电源频率的2倍;切断电源,电磁振动立即消失;振动可以在定子机座和轴承上测得;振动幅值与机座刚度和电机的负载有关。

6

气隙不均匀引起的电磁振动

气隙不均匀(或称气隙偏心)有两种情况:

一种是由于定子、转子不同心产生的静态不均匀;另一种是由于轴弯曲或转子与轴不同心所产生的动态不均匀。

它们都会引起电磁振动,但是振动的特征并不完全相同,分述于下。

1

气隙静态不均引起电磁振

电机定子中心与转子轴心不重合时,定、转子之间气隙将出现偏心现象,这种气隙偏心往往固定在某一位置,它不随转子旋转而改变位置。从图9a中可以看出,由于通过气隙最小点A的旋转磁场频率为f0/P,这时不平衡磁拉力将变化2P次,因不平衡磁拉力和电磁振动频率为

图9 静态、动态偏心的电磁振动

a) 静态偏心 ;b) 动态偏心;c) 动态偏心电磁力的拍振

静态气隙偏心产生的电磁振动特征是:

电磁振动频率是电源频率f0的2倍,即f=2f0;振动随偏心值的增大而增加,与电机负荷关系也是如此;气隙偏心产生的电磁振动与定子异常产生的电磁振动较难区别。

2

气隙动态偏心电磁振动

电机气隙的动态偏心是由转轴挠曲、转子铁心不圆或转子与轴不同心等造成的,偏心的位置对定子是不固定的,对转子是固定的,因此,偏心位置随转子的旋转而同步的移动,如图9b)所示。

气隙动态偏心产生电磁振动的特征是:

转子旋转频率和旋转磁场同步转速频率的电磁振动都可能出现。电磁振动以1/(2sf0)周期在脉动,因此,在电机负载增加,s加大时,其脉动节拍加快。电机往往发生与脉动节拍相一致的电磁噪声。

7

转子导体异常引起的电磁振动

笼型异步电机因笼条断裂,绕线型异步电机由于转子回路电气不平衡,都将产生不平衡电磁力,这不平衡电磁力F在转子旋转时是随转子一起转动的,其性质和转子动态偏心的情况相同,其发生的机理如图10所示。

图10 转子绕组不平衡引起的电磁振动

a) 发生振动的机理;b) 电磁振动波形

转子绕组异常引起的电磁振动的特征:

转子绕组异常引起电磁振动与转子动态偏心所产生的电磁振动的电磁力和振动波形相似,现象相似,较难判别。虽然拍频都是2sf0,但电磁振动的高频部分不同,转子动态偏心的高频为2f0/P,转子绕组异常的高频为2(1-s)f0/P。电机负载增加时,这种振动随之增加,当负载超过50%以上时较为显著。若对电机定子电流波形或振动波形作频谱分析,在频谱图中,基频两边出现±2sf0的边频,根据边频与基频幅值之间的关系,可判断故障的程度。

图11 正常的电流频谱图

图12 一根断条时电流频谱图(满载)

未经允许不得转载: 汽车日报 » 比亚迪fo共振大

相关文章

themebetter

contact