新能源汽车维修解析之更换受损的动力电池(1)
新能源情报分析网联合比亚迪汽车北京北方华鹏集团,针对比亚迪系EV和PHEV车型因人为碰撞发生事故,展开涉及车身焊接、电驱动系统和动力电池的重度维修过程全纪录。
本文记录的这台1台2018年款比亚迪e5 450型电动汽车,因为行驶过程中发生托底事故,通过商业保险理赔进行更换具备液冷动力电池总成维修过程全纪录。
前几天才跟大家分享了底盘护板的选择和使用技巧,其中就聊到底盘护板对新能源汽车电机和电池能够起到不错的作用,保护车主的权益。结果稿件还没出几天,笔者就在4S店碰到一台比亚迪e5 450车型,由于没有安装底盘护板导致电池被磕坏,从而需要更换电池的例子。
1、比亚迪e5 450型电动汽车的核心技术状态:
这次出现电池事故的车型是2018款比亚迪e5 450电动汽车,电池容量为60.46千瓦时,电池总成能量密度为140.67瓦时/公斤,工信部综合续航为400公里,匹配一台160千瓦永磁同步电机,最大扭矩310牛米。
2018款比亚迪E5相比于笔者购买用来长测的老款E5而言,重点就是升级了电池容量、型号和电池温控系统。2018款E5动力电池由磷酸铁锂电池更换为镍钴锰三元锂电池。而电池温控系统采用三组补液壶构成,具备高温散热低温余热功能。
上图为e5 450动力舱细节特写:
红色箭头:一体化设定的“4合1”电驱动控制总成
蓝色箭头:“4合1”电驱动控系统和驱动电机散热循环管路补液壶
白色箭头:驾驶舱PTC模组低温预热循环管路补液壶
黄色箭头:动力电池总成PTC模组与水冷板模组串联的循环管路补液壶
绿色箭头:动力电池液态高温散热和低温预热控制模组
橘色箭头:伺服动力电池总成的PTC模组(预热)
在架构上E5 450电驱动系统大体承载自E5 300(2016款),但是在驾驶舱和动力电池加热与制冷控制策略进行了精细化。
加热器作为一个“加热源”,为驾驶舱和动力电池输送热能(加热液态介质通过管路将能量送入驾驶舱或动力电池组件)。
BC系列电动空调压缩机作为一个“制冷源”,为驾驶舱和动力电池输送冷气(电动空调对液态介质制冷,通过管路将能量送入驾驶舱或动力电池组件)。
无论加热还是制冷,通过“板换(水冷板模组)”这个“多通电子阀体”进行精准控制(流量和温度),依托动力电池电量进行“冷热”交换。无论制热还是制冷的动力,都来源于动力电池组件。
2018年款比亚迪e5 450型电动汽车,采用3组循环管路设定。第1组具备高温散热功能的循环管路伺服“2合1”电驱动总成、“4合1”电驱动控制总成;第2组低温预热循环管通过高温PTC模组路伺服驾驶舱空调制热系统;第3组高温散热和低温预热管路通过低温PTC模组和水冷板模组伺服动力电池。
2、比亚迪e5 450型电动汽车的动力电池更换详情:
由于该车动力电池之前没有安装电池护板,因此整体磕碰严重导致动力电池损坏,笔者到达4S店时,这台E5已经上了台架,原装损坏的电池已经被拆除,大家可以清楚的看到电池充分利用了底盘和车内的空间。
上图为需要更换的全新动力电池,黄色箭头为电池温控系统恒温液冷散热预热管路进出水口,红色箭头为广泛使用与比亚迪动力电池的轻量化悬置组件。
上图为比亚迪e5 450镍钴锰三元锂电池总成通讯和正负极线缆细节特写。
更换的全新电池生产地为深圳比亚迪锂电池有限公司,额定电压为604.8伏,额定容量为100安时,两者数据相乘即可得知电池容量数据60.48千瓦时。比亚迪是目前全球新能源汽车领域少有的使用超高压平台的新能源品牌,目前除了保时捷采用800V高压外,主流新能源汽车比如吉利、小鹏或者特斯拉等的额定电压都仅为346V左右,高电压平台有什么好处呢?给大家举个例子,同样时间内一条高速公路需要通过车辆,电压越高,就代表道路越宽,因此同样时间内经过的车辆就能够更多。因此高电压平台在整车充当电方面具备相当不错的优势,而且电压越高,电流在线束传导时的损耗就越低,整车电耗水平优化更彻底。
由于操作不当引发的底盘受到磕碰并导致动力电池受损,因此该电池并不能享受比亚迪厂家对于电池终身免费质保的售后政策,所以该车主只能通过投保的保险公司进行赔付。笔者相信很多车主或者准车主担心的一点就是保险公司不会对电池进行理赔,其实大可不必担心,除非本身刻意损毁动力电池,保险公司不会赔付外,正常事故保险公司都会按照正常流程进行理赔,毕竟动力电池也属于车辆的组成部分,不能因为电池贵就不在理赔的范围内。
笔者有话说:
笔者还是之前的观点,护板是大家容易忽视的地方,但是对于新能源汽车或者传统燃油车而言,底盘护板确实可以起到一定的防护作用,尽可能减少车辆由于托底造成的损害,特别是新能源汽车动力电池部分,安装动力电池护板后能够保证动力电池托底时不会再电池本体上产生划痕,这样对于后续电池售后质保能够起到最大保护消费者权益的作用。
另外,鉴于EV和PHEV车型具备的电驱动系统和动力电池总成特有的高压特性,在非授权4S店或服务站进行相关维修和养护引发的安全隐患必须高度重视。
且涉及到电驱动系统和动力电池总及周边伺服系统的更换,也只能从授权4S店和服务站获得。因此,在整车全寿命周期内坚持在授权4S店购买保险就更为重要了。
文/新能源情报分析网粟超
比亚迪e5 高压电控总成的组成-原理
一.比亚迪e5车高压电控总成的组成
2015年至2018年产的比亚迪e5车采用第2代e平台,高压电控总成安装在车辆的前舱。
高压电控总成的安装位置
1、高压电控总成的组成
高压电控总成是将纯电动汽车的双向交流逆变式电机控制器(VTOG)、车载充电器(OBC)、高压配电箱和DC-DC转换器这4个高压电控装置合为一体,又称“高压四合一”。
(1)VTOG控制器
该控制器为电压型逆变器,利用IGBT将直流电转化成交流电,其主要功能是通过收集挡位信号、加速踏板信号、制动踏板信号等来控制电机,根据不同工况控制电机的正反转、功率、扭矩、转速等,即控制电机的前进、倒退、维持车辆的正常运转。此外,还具备充电控制功能,能进行交直流转换,双向充放电控制。该控制器总成分为上、中、下3个单元,上、下层为电机控制单元和充电控制单元,中间层为水道冷却单元。
(2)车载充电器
车载充电器是指固定安装在纯电动汽车上的充电器,根据高压电池管理系统(BMS)提供的数据,能动态调节充电电流或电压参数,执行相应的动作,完成充电过程。
(3)高压配电箱
高压配电箱的功能主要是将高压电池的高压直流电供给整车高压电器,接收车载充电器或非车载充电器的直流电,给高压电池充电,同时还具有电流检测、漏电监测等其他辅助检测功能。
(4)DC-DC转换器
DC-DC转换器是电动汽车动力系统中很重要的组成部分,通过DC-DC转换器给低压电池充电,与低压电池一起为低压电器系统供电。
2、 高压电控总成的功能
(1)高压电控总成的外部接口
高压电控总成外部接口分为高压接口和低压接口两部分。高压接口有电池包高压直流输入接口(直流母线正极接口、直流母线负极接口)、电机三相(三相交流输出)接口、交流充电(输入交流)N与L1相接口、交流充电(输入交流)L2与L3相接口、直流充电输入接口、空调电动压缩机接口、加热器PTC接口。低压接口有DC-DC输出接口、VTOG控制器低压接口、高压配电箱低压控制接口。
高压电控总成前侧
高压电控总成左侧
高压电控总成后侧
高压电控总成右侧
(2)高压电控总成的内部模块布局
高压电控总成内部主要部件有VTOG控制器(控制板、IGBT驱动板、IGBT)、电容(660 μF母线电容总成、70 μF、25 μF)、接触器、霍尔电流传感器、车载充电器总成、电感及电感温度传感器、继电器电路板模块等。
B)下侧
C)上侧爆炸图
高压电控总成内部模块布局
(3)高压配电箱
高压配电箱主要由接触器、霍尔电流传感器、预充电阻、高压电池包正负极输入接口组成。接触器由BMS控制,用于充放电。
高压配电箱组成
(4)漏电传感器
本车采用直流漏电传感器。当高压系统漏电时,漏电传感器发送信号给BMS,BMS接收到漏电信号后根据漏电情况马上报警或断开高压系统,以防止对人或物品造成伤害和损失。
漏电传感器
(5)VTOG控制器
VTOG控制器由上、下两块电路板组成,上方为控制板,下方为IGBT驱动板。IGBT驱动芯片采用1ED020I12FA2芯片。IGBT总成固定于IGBT驱动板上,其控制极G、控制极E通过弹簧与电路板上的电路连接,该总成上还有用于检测其工作温度的温度传感器(热敏电阻)。
此车VTOG控制器预留有车辆对放电排插供电功能(VTOL)及车辆对车辆放电功能(VTOV),可通过转向盘上的按键进行设置。
VTOG控制器上控制板(正面)
VTOG控制器上控制板(背面)
IGBT驱动板
VTOG控制器主要有驱动控制与充电控制两大功能。驱动控制(放电)是采集加速踏板、制动踏板、挡位、旋变等信号,实现前进、倒车、减速或制动时正反转发电功能;具有高压输出电压和电流控制功能;具有电压跌落、过流、过温、IPM过温、IGBT过温保护、功率限制、扭矩控制限制等功能;具有电控系统防盗、能量回馈控制、主动泄放、被动泄放控制等功能。充电控制具有交直流转换,双向充放电控制功能;具有自动识别单相、三相相序并根据充电电流控制充电方式,根据充电设备识别充电功率控制充电方式,根据车辆或其他设备请求信号控制车辆对外放电的功能;具有断电重启功能,即在电网断电后又供电时,可继续充电的功能;原版的高压四合一车型在直流充电时,具有直流充电升压功能,从而可使用一些输出电压低于比亚迪e5车的通用直流充电柜进行充电。VTOG控制器还包括CAN通讯、故障处理记录、在线CAN烧写及自检等功能。显然,进行驱动控制时电机的三相接触器处于接通状态,而充电控制时电机的三相接触器处于切断状态。
(6)DC-DC转换器
DC-DC转换器及DC低压输出端子。DC低压输出端通过正极熔丝盒给低压起动铁电池充电并给整车低压电器系统供电。
DC-DC转换器及低压输出端子
(7)车载充电器
它用于功率不高于3.3 kW的单相交流充电设备充电的场合,适用的充电设备包括便携式充电器、3.3 kW壁挂式充电盒。使用功率大于3.3 kW的单相或三相交流充电设备充电则要经过VTOG控制器进行。拆下上盖的车载充电器,可以看出其有两块电路板,需拆下车载充电器内部的上部电路板后,再拆下变压器与下部电路板。
拆下上盖的车载充电器
车载充电器壳体及下部电路板
(8)电容
该车高压电路中使用的电容为薄膜电容。薄膜电容的耐压可以达到1000 V DC以上,改善了电容的防潮性和抗温度冲击能力,工作环境温度可达105 ℃~125 ℃。主要由母线电容总成、直流充电升压器的70 μF电容及3个25 μF电容总成等组成。
薄膜电容
(9)霍尔电流传感器
高压电控总成中采用了霍尔电流传感器来检测电流。为检测电流方向,有的采用了正、负电源供电。一般需要在线检测霍尔电流传感器的性能好坏,先检查其是否有“+15 V”“-15 V”的电源,若电源正常,则测试霍尔信号(“1 V”对应100 A)并与电源管理器的当前电流进行对比,从而判断霍尔电流的正常与否。
霍尔电流传感器
(10)复合母排。高压电控总成中采用了复合母排技术,具有电气安全性高、电磁辐射小、传导发热小、集成度高等优点。
复合母排
2.高压电控总成的工作原理
2.1 高压安全保护
(1)碰撞断高压电保护
如果车辆发生碰撞,BMS接收到安全气囊展开信号后,通过断开系统主接触器来切断高压电。
(2)漏电断高压电保护
漏电传感器主要监测与高压电池相连接的正极母线或负极母线与车身底盘间的绝缘电阻,来判定高压系统是否存在漏电。漏电传感器将漏电数据信息通过CAN通讯发送给BMS和VTOG控制器,然后采取相应保护措施。漏电判定及措施见表1所列。
(3)高压互锁保护
高压互锁保护分为结构互锁和功能互锁两部分。结构互锁是指车辆的主要高压连接器均带有互锁回路,当其中某个连接器带电断开时,BMS便会检测到高压互锁回路存在断路,为保护人员安全,将立即进行报警并断开主高压回路电气连接,同时激活主动泄放。功能互锁是指当车辆进行充电或插充电枪时,高压电控系统会限制车辆不能通过自身驱动系统进行驱动,以防发生安全事故。
2015年产比亚迪e5车没有安装维修开关,2015年后产的比亚迪e5车安装维修开关,其高压互锁电路示意图如图所示。
表1 漏电判定及措施
高压连接器的互锁保护
2015年后产的比亚迪e5车高压互锁电路示意图
安装维修开关的高压互锁回路依次将BMS的端子BK45(A)/1、PTC模块的端子B52/1和端子B52/2、高压电控总成的端子B28(B)/22和端子B28(B)/23、高压电池包的端子KxK51/29和端子KxK51/30、BMS的端子BK45(B)/7串联起来。高压电控总成的高压互锁回路经母线“-”连接器、母线“+”连接器、PTC线束连接器、空调压缩机线束连接器依次串接起来。
(4)主动泄放保护
5 s内把预充电容电压降低到≤60 V,迅速释放危险电能,主动泄放模块的泄放电阻为7.5 Ω(标准)。
(5)被动泄放保护
2 min内把预充电容电压降低到≤60 V,被动泄放是主动泄放失效的二重保护。被动泄放电阻(标准75 kΩ)直接接于660 μF高压电容器正负极两端,上电后一直处于耗电状态,但电流很小,损耗可忽略不计。
2. 上电过程
车身控制模块(MICU)采集到“制动踏板”与“起动按钮”命令后,由VTOG控制器与无钥匙系统模块(Keyless-ECU)进行防盗认证,认证成功后吸合IG1继电器并发送“起动开始”报文,通过网关发送给VTOG控制器和BMS。BMS得电且收到报文后,BMS先吸合预充接触器并进行自检,检查是否存在严重欠压、严重过压、严重漏电、严重过温、接触器烧结、高压互锁锁止等异常情况,如果检测存在异常情况则上电失败,如果未检测到异常情况,则吸合负极接触器,高压电池的高压电经过与预充接触器串联的限流电阻加载到VTOG控制器母线上,然后判断预充是否成功。VTOG控制器检测到母线上的电压达到高压电池额定电压的设定值时,通过CAN通讯向BMS反馈预充满信号,如果不预充直接接通接触器,由于母线电容在通电瞬间相当于短路状态,会使过大电流流过接触器,因而可能产生接触器烧结等不良后果,当无严重漏电信号、直流母线电压达到设定值且直流低压系统无低压警告时,BMS判定预充成功,BMS控制主接触器吸合,断开预充接触器,点亮OK灯,上电成功。
3、 驱动电机时的原理
比亚迪e5车的高压电控总成有多种版本,根据年款等有所变化,分原版高压电控总成与简版高压电控总成。
比亚迪的漏电传感器有2种,一种接于正极,一种接于负极,两者不可互换。驱动电机时,3个电机接触器闭合,高压电经IGBT逆变桥(6个绝缘栅双极晶体管在ON和OFF间切换)变换出交流电并输送给电机,利用旋转变压器技术和空间矢量脉宽调制(SVPWM)控制算法来控制电机正转(前进)或反转(倒车)。
4、 再生制动时的原理
车辆减速或制动时,电机由车轮驱动,再生制动功能使电机起到发电机的作用,将电能存储到高压电池中。
5、 单相交流充电原理
当使用便携式充电器或功率不大于3.3 kW的交流充电器进行充电时,VTOG控制器能自动识别出充电设备,并唤醒车载充电器,激活交流充电正极接触器,对高压电池进行充电。
当使用功率大于3.3 kW的交流充电器进行充电时,在N相线与B相线(对电机一侧而言)间增加单相切换接触器,VTOG控制器收到单相充电指令时,控制单相切换接触器吸合,使B相线和N相线连接,由A相、B相作为L1相、N相线使用,充电枪连接插头需使用专用连接插头或其L2相、L3相不做使用的连接插头。当VTOG控制器收到单相充电指令时,控制单相/三相切换接触器其中的2个接触 器闭合,使三相充电插座的L1相、L2相与单相充电插座的L1相、N相线导通。
高压电控总成内部线路图
6、 三相交流充电原理
系统收到充电指令时,将BMS允许的最大充电电流、供电设备最大供电电流和充电连接装置的额定电流相比较,VTOG控制器判断这三者中最小的充电电流,自动选择充电相关参数,同时系统对供电设备输送的交流电进行采样,VTOG控制器通过采样值计算出交流电电压有效值,再通过捕获来确定交流电频率,根据电压有效值和频率判断出交流电电制,根据电网电制选取控制参数。确定控制参数后,VTOG控制器控制继电器板的三相交流预充继电器和滤波电容继电器吸合,对直流侧母线电容进行充电,当电容电压达到规定值后吸合单相/三相切换接触器,同时断开继电器板的三相预充继电器,此时VTOG控制器发送PWM信号,控制双向DC/AC模块对交流电进行可控整流,再根据高压电池电压,对电压进行调节,最后把直流电输送给高压电池。在此过程中,VTOG控制器根据预先选定的目标充电电流和电流采样反馈的相电流,对整个系统进行闭环的电流调节,实现对高压电池进行充电。
7、 直流充电原理
比亚迪e5车除了可采用交流充电方式外,还具有直流充电的快速充电方式。
直流充电主要是通过充电站的充电柜将直流高压电直接通过直流充电口给高压电池充电。
当使用的直流充电柜最大输出电压小于高压电池电压时,直流充电升压器工作,将下桥臂的增压IGBT置于ON,使直流充电柜的电力为电感充电。电感存储了电能,将下桥臂的增压IGBT置于OFF,电感产生感应电动势,使电压升至合适的充电电压,电流持续从电感中流出,通过上桥臂IGBT流入母线电容和高压电池。
免责声明:此讯息系转载自互联网其它媒体,我们登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文中陈述文字和内容未经证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,文章内容仅供参考!如果您不希望我们转载您的作品,请和我们联系处理,谢谢!
比亚迪E5电动汽车高压电控系统故障诊断排除
一、故障现象
有一辆 2017 款比亚迪 E5 300 纯电动汽车,配备 75Ah 容量的磷酸铁锂电池,工作电压为 633.6V,永磁同步交流电机最大功率 160 k W。长时间停放,在起动时无法上 OK 电(高压电),车辆无法正常行驶,仪表显示“请检查动力系统”,充电连接图标点亮,连接交流充电枪能正常进入充电页面,但仪表指示充电功率为0。
二、故障原因分析
根据故障现象及仪表板的故障显示初步判断可能存在两类问题。
第一个是高压驱动系统故障,包括从动力电池到驱动电机的高压系统及其控制系统;
第二个是交流充电系统故障。高压驱动系统故障可能引起交流充电无法进行,故判断交流充电系统是否存在故障,需要先排除高压驱动系统故障后再进行确认。
1.高压驱动系统故障原因分析驱动系统故障致使无法上高压电的原因很多,主要涉及高压系统及其控制系统线路问题。高压系统包括动力电池、高压电控总成(集成了VGOT、DC-DC、OBC、高压配电箱、漏电传感器)、驱动电机以及各个高压系统之间的高压线路和高压线路上的接触器;低压控制线路包括电池管理系统(BMS)、高压电控总成低压控制线路、车身管理模块(BCM)、总控制器、CAN 网络、高压互锁系统等。
比亚迪电动汽车高压系统高度集成,高压线束保护严实,损坏的可能性较小。故先从低压系统及线路开始排查。涉及的系统较多,需先通过解码器读取故障码和数据流,缩小故障范围。
2.交流充电系统故障原因分析若无法上 OK电故障排除,充电故障依然存在,则充电系统存在故障。根据仪表板有充电页面显示,初步排除充电信号 CC 问题,故障点可能在交流充电接触器线路、霍尔电流传感器线路问题。
三、故障诊断及排除
连接解码仪,读取故障码,显示高压互锁故障。读取数据流,动力电池总电压,各电池模组电压温度均正常;预充完成;动力电机母线电压异常;高压互锁锁止异常。判断动力电池及采集系统和线路正常,高压互锁线路存在故障,故先排除高压互锁故障。高压互锁系统是用低压监测高压电路完整性的安全设计方法,主要检测高压电路接口的通断,高压互锁在 所 有 的 高 压 系 统 中 形 成 一 个 回路。在关闭电源情况下,用电压表分别检测互锁回路中各段线路的导通性,包括:BK45(A)-1 至 B52-1、B52-2 至 B28(B)-22、B28(B)-23 至 BK45(B)-7、BK45(B)-7 至 BK45(A)-1。通过检测,发现 B28(B)-23 至 BK45(B)-7线路不导通,检查该段线路,发现该线路在 B28(B)插接器附近线路损坏,将线路修复,重新起动。
高压互锁故障排除后,重新上高压电,发现仍然无法上高压电,仪表板显示“如需充电,请关闭电源挡后 ……”。解 码 仪 读 取 故 障 码 ,此时,高压互锁故障码消失,系统无故障码。读取数据流,高压电机母线正常,有交流充电感应信号,该数据流异常。
判断 CC 短路或者 VTOG 控制电路故障。关闭电源,检测交流充电口 CC 与地的导通性,不导通,排除CC 线路故障。检测 VTOG 电源线路,发现 VTOG 常电保险丝 F2/2 7.5A下端无电压,拔出保险丝发现该保险丝烧断,重新换上 7.5A 保险丝。
重新上高压电,OK 灯点亮,上电正常,驱动系统故障排除。
驱动系统故障排除后,插上交流充电枪,仪表盘有充电页面显示,但无充电功率,故交流充电系统故障。充电功率为零,故障可能为电流霍尔传感器及其线路故障,或者充电接触器或预充接触器及其线路故障。连接解码仪,无故障码,数据流未发现霍尔传感器电流信号异常,交流充电感应信号正常,充电接触器吸合异常。检测交流充电接触器相关控制线路 BK45(A)-34至 B28(B)-33、B28(B)-25 至 F2/33 线路导通性,发现B28(B)-25至 F2/33 不导通。检查线路,发现该段线路在 B28(B)附近损坏。将线路修复,重新连接充电枪,能正常充电,故障排除。由此可以大致判断,在同一个端子附件,两根线路受到外力作用出现断路的问题。
四、高压系统故障诊断总结
国内纯电动汽车各品牌的高压及控制系统存在一些差异,但从原理上大同小异。根据 4S店大量的维修案例表明,目前国内纯电动汽车的故障主要表现在无法上电和交流无法充电。根据新能源汽车控制原理,在新能源系统维修中主要先解决无法上电问题,再解决无法充电的故障。
另外在不确定高压系统还是低压系统故障时,根据控制原理和考虑到维修的效率,先解决低压系统问题,再考虑高压系统故障。在掌握新能源汽车基本控制逻辑的基础上,借助解码仪等诊断工具,再结合电路图的分析,找到并解决新能源汽车电路系统问题并不困难。