汽车日报 汽车日报

当前位置: 首页 » 汽车资讯 »

比亚迪拆解视频

拆解比亚迪海豹,成本比特斯拉还低15%,拆解报告(CTB 、八合一)

需要对标样件请联:shbinzer 拆车邦

《日经XTECH》编辑部和日经BP综合研究所实施了第5期新款电动车的拆解调查企划。此次的项目组选择的车是中国比亚迪(BYD)的纯电动汽车(EV)“海豹(SEAL)”。

海豹是比亚迪的全球战略车。预计2023年底引入日本市场。因此,拆解项目组决定在该车在日本上市之前从中国进口。通过拆解来调查正在进军全球市场的比亚迪的实力。

比亚迪的纯电动汽车“海豹”
中型轿车,被定位于纯电动汽车的高端车型,融入了比亚迪的多项最新技术(摄影:《日经xTECH》)

全球的纯电动汽车市场持续扩大,比亚迪逐渐显露头角。从2022年的全球纯电动汽车销量来看,比亚迪仅次于美国特斯拉排在第2位,销售了约86.8万辆。2021年的销量还是约31.8万辆,1年时间增长了两倍以上。

进入2023年以后,比亚迪的势头依然很猛。从各汽车厂商1~3月(第一季度)的中国市场销量来看,比亚迪首次超过德国大众位列第一。


比亚迪已开始进军全球市场。截止到2023年5月,比亚迪开展乘用车业务的国家和地区达到39个。2022年7月宣布进入日本市场。2023年1月,比亚迪在日本推出了SUV型纯电动汽车“ATTO 3”。2022年10月还宣布涉足欧洲市场。

引入日本市场的3款车型
左起分别为海豹、ATTO3、海豚(摄影:《日经xTECH》)

与日本和欧洲汽车厂商同台竞技的比亚迪,已经成为不可忽视的存在。公开信息显示,比亚迪自产零部件的意愿强烈,采用了缩减ECU(电子控制单元)数量的电气电子(E/E)架构。其思路似乎与特斯拉接近。比亚迪是模仿者还是引领者?通过拆解调查来一探究竟。

选择海豹的原因

此次选择的拆解对象是海豹,作为纯电动汽车的高端车型,融入了比亚迪的很多最新技术。

海豹的零部件配置图
此次的拆解调查选择了四驱版(4WD)(数据来源:《日经xTECH》根据比亚迪的资料作图)

比亚迪的优势之一是电池。比亚迪原本就是电池制造商起家,创立于1995年。目前,比亚迪也是全球份额排名靠前的车载电池制造商。海豹配备了比亚迪的最新电池,被称为“刀片电池”(Blade Battery)的磷酸铁锂(LFP)电池。磷酸铁锂类电池具有热稳定性高、循环寿命长的优点。尤其是纯电动汽车,驱动时会产生很大的功率,热稳定性十分重要。

磷酸铁锂类电池的安全性更高,但与锰类和三元类电池相比,能量密度较低。为了弥补这一点,刀片电池将细长扁平形状的电池单元作为1个结构零部件,直接嵌入电池组内。

除电池外,比亚迪还开发和生产纯电动汽车的主要零部件——驱动马达、逆变器、ECU等。使用这些主要零部件,比亚迪自产了将8个单元合为一体的“八合一”型电动驱动桥,并安装在了海豹的后轮端。

具体来说,八合一的电动驱动桥内嵌入了驱动马达、变速箱、逆变器、车辆控制器、电池管理系统(BMS)、DC-DC转换器、车载充电器、电源分配单元(PDU)。

海豹采用比亚迪的EV专属平台“e平台3.0”。特点是整合了刀片电池和底盘。目的是改善空间利用率,弥补刀片电池能量密度低的特点。最终,空间利用率比上一代“e平台2.0”增加了约50%。


点击图片可查看大图

中国版海豹有后轮驱动和四轮驱动(4WD)两种驱动方式。此次项目组购买的是最高端的四驱版。

四驱版在前轮配备的马达最高输出功率为160kW、最大扭矩310N·m,后轮马达最高输出功率230kW、最大扭矩360N·m。都是永磁同步马达。电池容量为82.5kWh,续航距离在中国CLTC模式下为650km。价格为27.98万元,换算成日元约为553万日元。

长4800mm、宽1875mm,正好处于特斯拉“Model S”与“Model 3”之间的尺寸。在日本车中,与日产汽车“Skyline”及丰田“雷克萨斯IS”接近

海豹到了!

2023年3月下旬,海豹从中国被运到茨城县日立港,之后立即被送往新潟县进行拆解,进行了实车确认和行驶试验。

从市区道路上行驶给人的感觉是容易晕车。电动车与汽油车相比,没有变速,因此加速更加灵敏。正因为此,即使驾驶员开车很稳,乘客也会晕车。由于加速时发动机没有声音,人体习惯“无声加速”需要时间。与其他公司的电动车相比,感觉海豹也更容易晕车。尤其是后座随着电动车特有的加速,道路凹凸不平明显,乘坐舒适性不好。

弯道行驶时可体验EV特有的灵敏加速(摄影:《日经xTECH》)

弯道可以感受到电动车特有的灵敏加速。百米加速只需3.8秒。由于是四驱,猛踩油门也不会损坏牵引力,拐弯十分平稳。不过可能是对加速还不习惯的原因,司机在驾驶途中也感觉到了晕车。

海豹配备了一些日本车和欧洲车没有的装备和功能。中央显示屏通过旋钮可以切换竖屏和横屏。中控台配备了卡拉OK的麦克风。此外,还有很多以前在日本车上没有见过的装备,比如电动车和混动车低速行驶时会像垃圾车一样播放音乐,向周围提示有车辆靠近。


卡拉OK麦克风
在车内可以唱卡拉OK(摄影:《日经xTECH》)

持续快速增长的比亚迪比特斯拉及日欧汽车厂商的技术领先了多少?拆解项目组在2023年4月底进行了拆解调查,探寻比亚迪的技术实力。

02

拆解比亚迪海豹(2)是电池也是车身的CTB技术

“先从电池开始拆吧。因为我觉得只是用底面的螺栓固定住了”。比亚迪纯电动汽车“海豹(SEAL)”的拆解调查已经开始(图1)。

图1:拆解比亚迪的EV“海豹(SEAL)”
此次拆解的车型选择了四轮驱动(4WD)、续航距离为650km(中国自主的行驶周期CLTC模式)的车型(摄影:日经xTECH)

不用说,电池是左右电动汽车性能的重要部件。虽然为了提高能量密度,电池新材料的研发不断推进,但并不会快速提高。某车企的EV技术人员指出,作为延长续航距离的现实办法,各家车企竞相“提高电池的配备效率,尽量增大容量”。

在这种背景下,比亚迪在海豹上采用的技术是“CTB(Cell to Body)”。通过使电池组起到车身构造体的作用,减少部件个数以确保空间,从而可以配备更多电池单元。

比亚迪采用了磷酸铁锂(LFP)类锂电池。与作为正极活性物质的主要成分使用镍(Ni)、锰(Mn)、钴(Co)的三元(NMC)电池相比,磷酸铁锂类的能量密度一般更低。预计是为了弥补这一缺点而采用了CTB。

电池的安装方式与大众“ID.3”不同

为了研究支持CTB技术的电池组和车身,项目组从车身上拆下了配置在底板下面的电池(图2)。拆解是在日本新潟国际汽车大学校(通称GIA)的协助下实施的。日经BP的拆解项目之前已在该校的基地调查了美国特斯拉的EV“Model 3”、“ModelS”及德国大众的“ID.3”。

图2:拆下底板确认电池
底面被黑色的盖板覆盖(摄影:日经xTECH)

ID.3是将固定电池组的所有螺栓都配置在车体外部的底板下面。这样设计考虑到了在车辆生产线上安装电池组时的操作性,在车辆报废后拆下电池回收利用时也方便取下电池组。

拆解项目组在此前的拆解中了解这些优点,曾经以为比亚迪的海豹也会采用跟ID.3一样的设计。

“哎呀,拆不下来。或许是Model 3的模式……”,负责拆解的技术人员脸上露出困惑的表情(图3)。

图3 拆除车身外部的螺栓之后,电池并没有松动
拆解在新潟国际汽车大学校(通称GIA)实施(摄影:《日经xTECH》)

把用来固定电池组的车身底面的螺栓全部拆除之后,海豹的电池仍没有拆下来。拆解Model 3时,必须把座椅和地毯等拆掉,再把固定车身和电池组的螺丝拧下来,才能把电池拆卸下来。这样的记忆再次浮现。

检查海豹的车厢内时,在后座的脚底下、前座稍微隐蔽的位置发现了固定电池的螺栓。这样的话,即便没有准备特殊工具也能拆卸。虽然不需要拆卸座椅和地毯等繁杂的作业,但有的螺栓需要从上端拆除,因此拆解难度介于ID.3和Model 3之间(图4)。

图4 从海豹上拆下电池组时的情形
拆掉用来固定车身和电池组的螺丝及高压电缆等,用专用升降机拆下了电池组(摄影:《日经xTECH》)

用密封圈来确保密封性

拆下海豹的电池组后,让人感到吃惊的是车身一侧的结构。竟然没有地板。准确来说,是电池组的上表面同时起到了车身地板面的作用(图5)。ID.3和Model 3等大多数纯电动汽车都在电池组上面配置了钢板(图6、7)。

图5 拆掉电池组之后,可以看到地面
照片中的红圈部分是拆掉中控台后的样子(摄影:《日经xTECH》)

图6 大众的ID.3
拆下电池组之后的样子,上面有钢板(摄影:《日经xTECH》)

图7 特斯拉的Model 3
虽然厚度只有0.6mm,但也配置了钢板(摄影:《日经xTECH》)

海豹在电池组上配置了横梁(cross member),目的是确保车身的强度以及保护电池避受碰撞冲击。上面是地毯。用发泡材料填充了电池组与地毯之间因横梁厚度而产生的空隙(图8、9)。

图8 用海绵填充空隙
在横梁之间配置了发泡材料(摄影:《日经xTECH》)

图9 揭下地毯之后,出现了大洞
拆解工作接近尾声时的情形(摄影:《日经xTECH》)

为了防止路面噪声和水等进入,海豹采用了下车体和电池组上部紧贴在一起的结构。具体来说,对电池组上表面的外周进行了彻底的密封处理(图10)。通过拧紧电池组的固定螺栓,使密封圈和下车体紧贴在一起,由此提高了车厢内的密封性。如上所述,电池组上表面同时起到了车身地板的作用,因此很平坦,密封处理并不难。

海豹的电池组
围住上表面外周的灰色部分是密封圈(摄影:《日经xTECH》)

CTB技术让电池组同时起到了车身构造体的作用。通过功能整合减少了零部件数量,而且有利于降低成本。可谓是拥有电池和汽车双重制造商身份的比亚迪才能专门设计出来的结构。

03

拆解比亚迪海豹(3)磷酸铁锂密度不输三元

560.0kg,这是从中国比亚迪(BYD)的纯电动汽车“海豹(SEAL)”上拆下来的电池组质量。以这些数字为基础,项目组比较了比亚迪与美国特斯拉(Tesla)、德国大众的纯电动汽车。

从车身拆下来的海豹电池组的制造商为比亚迪旗下的中国无为弗迪电池有限公司(Wuwei FinDreams Battery、图1)。电池组上标明的电流容量为150Ah,电压为550.4V。由此可以计算出电池容量为82.56kWh,与标示值82.5kWh没有差异。作为电池组的质量能量密度为147.4Wh/kg。


图1 海豹的电池组质量为560.0 kg。
电池容量为82.5kWh(照片:日经XTECH)

日经BP的项目组过去拆解调查过的纯电动汽车数据如下。特斯拉“Model 3”的电池组质量为451.5kg,电池容量为75kWh,质量能量密度为166.1kWh/kg。大众“ID.3”的电池组质量为374.5kg,电池容量为58kWh,质量能量密度为154.8Wh/kg。

ID.3和Model3均采用将镍(Ni)、锰(Mn)和钴(Co)作为正极活性物质的主要成分的三元(NMC)锂电池。另一方面,海豹采用的电池是磷酸铁锂(LFP)类。

一般来说,磷酸铁锂电池在质量能量密度方面显得逊色。日本一家电池制造商的技术人员表示,“按电池单元的量产品比较,磷酸铁锂电池的质量能量密度比三元电池低约3~4成”。但是,海豹的质量能量密度仅比ID.3少5%。比亚迪通过提高电池单元的成组效率,提高了电池组的能量密度,接近ID.3。

以车身保护电池的特斯拉

特斯拉在质量能量密度比较中占优势的因素之一是电池组的结构。值得注意的是外围部分。比亚迪的海豹和大众ID.3为了保护电池免受碰撞时的冲击,在电池组的外围设置了铝合金制的加强部件(图2)。

图2 ID.3的电池组
在外围配备了铝合金造的加强部件(照片: 日经XTECH)

特斯拉Model3的电池单元没有这种加强部件,作为电池组来说变得更轻(图3)。冲击全部都由车身承受。侧梁(sidesill)、中柱(CenterPillar)、车顶纵梁(roof rails)和地板横梁(Floor Cross Member)等采用了抗张强度为980MPa级以上的超高强度钢板。由此,在发生侧面碰撞时,特斯拉的电池组和乘客舱不会变形。

图3 Model3的电池组
外围没有加固部件(摄影:日经XTECH)

“过度保护”的丰田

与特斯拉形成鲜明对比的是,丰田利用坚固的加固零件来保护电池免受碰撞时的冲击。丰田纯电动汽车“bZ4X”的电池组经过精心设计,参与开发的相关人士将其描述为“过度保护”(图4)。

图4 bZ4X的电池组
照片为取下电池单元的状态。丰田对电池组侧面进行了精心加固(照片:日经XTECH)

bZ4X电池组侧面的加固部件长度(从最外部到电池的距离)单侧约为20cm。利用这个长度吸收碰撞能量,是比亚迪海豹和大众ID.3的2倍左右。丰田相关人士表示,“bZ4X重视安全方面”。

加固部件的长度和电池的搭载容量成为权衡关系。如何在确保安全性和延长续航里程之间取得平衡,或将成为汽车厂商的比武擂台。

04

拆解比亚迪海豹(4)八合一电动驱动桥省电缆

中国比亚迪(BYD)的纯电动汽车(EV)“海豹(SEAL)”的拆解项目已进入与自主“刀片电池”并列为主要零部件的电动驱动桥的调查阶段。日经BP拆解的是四轮驱动(4WD)车型,前后轮各搭载1个电动驱动桥。本次介绍值得特别关注的后轮处的电动驱动桥(图1)。  


图1 后轮处的电动驱动桥的搭载位置
搭载在电池组的后方。(摄影:加藤康)

EV动力总成周边的整合化在加速   

  电动的动力总成(Powertrain)及其周边零部件正在迈向整合化。其代表就是正在成为EV核心零部件的电动驱动桥。把驱动马达、逆变器、齿轮箱(减速器与差速齿轮装置)作为3种主要部件合为一体的“三合一”模式正在成为主流。  

  在周边零部件中,具有DC-DC转换器、车载充电器、配电单元(PDU)实现一体化的案例。日经BP在2019年拆解的美国特斯拉(Tesla)的EV“Model 3”把这些零部件集中到设在电池组后方上部的名为“阁楼(Penthouse)”的箱体中。  

  最近出现了似乎把这2种整合趋势结合在一起的例子,以中国为中心成为一种趋势。把3种主要零部件、DC-DC转换器、车载充电器、电池管理系统(BMS)等集成到1个模块中,被称为“X合一”。

  致力于强化汽车业务的中国华为技术已经开发出把3种主要零部件、DC-DC转换器、车载充电器、BMS、PDU一体化的电动驱动桥的标准产品。作为电动驱动桥的海外厂商在中国市场占据首位的尼得科(原日本电产)也表示,计划2024年6月投放整合了与华为相同零部件的电动驱动桥 注)。 

注)据称尼得科还将根据客户要求增加PTC(Positive Temperature Coefficient)加热器。 

  比亚迪可以说是这种X合一潮流的引领者。在海豹和“ATTO3”等全球战略EV车型上,集成8种零部件的电动驱动桥已经实用化。据悉,比亚迪的八合一电动驱动桥除了3种主要零部件、DC-DC转换器、车载充电器、BMS、PDU之外,还把车辆控制器集成到一个模块中。整合的目的是“有效利用车内空间,降低成本,实现轻量化”(比亚迪)。  

  下面,让我们来看看从车辆上拆下的八合一电动驱动桥(图2)。 


图2 从车辆上拆下的后轮处的八合一电动驱动桥
马达上附有可能是用于降低声音和振动的外罩。(照片:《日经XTECH》)

采用简单的2层结构

  八合一电动驱动桥的结构为2层,下部配置马达和齿轮箱单元,上部配置逆变器、DC-DC转换器、车载充电器等组成的高压零部件单元(图3)。这种零部件配置与许多三合一电动驱动桥采用的形式大致相同。类似于把三合一中,相当于逆变器的部分替换为集成高压零部件的单元。


图3 拆下电缆和外罩的八合一电动驱动桥的外观
高压零部件单元配置在马达和齿轮箱单元之上。实际测量质量为114千克。(照片:《日经XTECH》)

  外形尺寸(标称值)为车辆前后方向591.3×宽度方向612.2×高度方向360mm。虽然把八种零部件合为一体,给人的印象却很紧凑。标称质量为104~106 kg,实际测量结果为114 kg。 

显眼的高压电缆较少

  比亚迪的八合一电动驱动桥引人注目的是用于连接的高压电缆数量少。与电动驱动桥通过高压电缆连接的有3处,分别是电池组、直流电源用充电口、交流电源用充电口(图4)。通过把DC-DC转换器、车载充电器、BMS集中至电动驱动桥,尽量减少了高压电缆和连接器。


图4 后轮处的电动驱动桥的侧面
高压电缆从汇聚逆变器、DC-DC转换器、车载充电器等的上侧单元的3处伸出。(照片:《日经XTECH》)

  有分析认为,比亚迪进行整合的目的之一降低成本,很大程度上是通过削减这些高压电缆和连接器来实现的。对于EV和混合动力车(HEV)等电动汽车来说,这些高压电缆和连接器是不可或缺的零部件,但也有人感叹“总之成本很高”(美国大型零部件企业的动力总成技术人员)。

  安装高压电缆多为手工作业,由于电缆直径较粗且较硬,因此难以操作。如果能减少电缆数量,应该也能减轻配线作业的负担。 

与大众ID.3的不同

  如果分别配置三合一电动驱动桥和DC-DC转换器、车载充电器、BMS,则所需的高压电缆数量和连接器个数会随之增加。以日经BP在2021年拆解的德国大众(VW)首款EV“ID.3”为例很容易理解。

  ID.3在后轮处搭载三合一电动驱动桥,DC-DC转换器与车载充电器分别配置(图5)。电动动力总成及其周边零部件的高压电缆的连接包括(1)逆变器和电池组(2)DC-DC转换器和电池组(3)车载充电器和电池组(4)直流电源用充电口和电池组(5)交流电源用充电口和电池组,共有5个系统。


图5 大众ID.3的高压零部件的配置
DC-DC转换器搭载于车辆前方,车载充电器搭载于车辆最后方。
(来源:《日经XTECH》根据大众的资料制作)

  此外,ID.3把BMS内置于电池组中,通过高压电缆把9个电池模块与BMS连接起来(图6)

图6 大众ID.3的电池组
连接9个电池模块和电池管理系统(BMS)的高压电缆位于电池组内部的中央。
(照片:《日经XTECH》)

  电动动力总成和周边零部件的集成不仅可以减少高压电缆和连接器。与单独配置各个零部件相比,还可以减少零部件数量和占用的体积。有分析认为,由于可减少容纳各零部件的外壳数量,因此也有助于削减金属材料等。

 中国比亚迪(BYD)的“八合一”电动驱动桥把8个零部件合为一体。除了驱动马达、逆变器、减速器这3个主要零部件外,还把DC-DC转换器、车载充电器、电池管理系统(BMS)等也合为一体。从比亚迪纯电动汽车(EV)“海豹(SEAL)”的后轮处拆下电动驱动桥后,本次展开进一步拆解,调查个别零部件(图1)。  

图1:比亚迪海豹的八合一电动驱动桥
在马达和减速器单元上面,配置了由逆变器、DC-DC转换器、车载充电器等构成的高压零部件单元。(摄影:加藤康)

  比亚迪八合一电动驱动桥的构成零部件如(图2)所示。首先从驱动马达来看。最高输出功率为235kW,最大扭矩为360N·m的永磁同步马达(PMSM)的内部是什么样子?


图2:八合一电动驱动桥的构成
高压零部件单元在上侧搭载了逆变器、BMS、车辆控制器,在下侧搭载了DC-DC转换器、车载充电器功能。
(出处:《日经XTECH》根据比亚迪的资料绘制而成)

  永磁同步马达(PMSM)是在EV拆解调查中很难拆的零部件之一。因为定子和转子凭借强大的磁力固定得很牢固。之前拆解过美国特斯拉“Model S”和“Model 3”、德国大众“ID.3”的技术人员们这次也被迫面临困难(图3)。即便如此,终于成功分离了定子和转子。


图3:与强大的磁力斗争,分离定子和转子
(摄影:加藤康)

  八合一电动驱动桥的马达出现了(图4)。定子的绕线使用的是扁线(图5)。成本比圆线高,但容易提高占积率(铜线在线圈截面积中的占比),有利于提高马达的效率。或许因为海豹在比亚迪的EV中是旗舰车型,并未选择一味降低成本。


图4 后轮处的驱动马达的定子
前端包覆有被认为用于绝缘的树脂。(摄影:加藤康) 


图5 定子的内部
似乎通过使用扁线作为绕线,提高了马达的效率。(摄影:加藤康)

  在此前日经BP拆解的纯电动汽车中,大众的ID.3与海豹一样,在马达定子中采用了扁线。而日产汽车的“Leaf”(中国名:聆风)、特斯拉的Model S、Model 3则使用了圆线。 

  从颜色的变化来看,转子似乎被分成了5个块体(图6)。转子2端的轴承上带有“FAG”字样,可见是德国舍弗勒(Schaeffler)的产品。  


图6 后轮处的驱动马达的转子
最高转速为1万6000rpm。转子似乎分成了5个块体。2侧的轴承均为舍弗勒的产品。(摄影:加藤康)

与特斯拉和大众的共同点   

  接下来,我们来看一下拆开的齿轮箱的内部。减速器是现行量产纯电动汽车的电动驱动桥中主流的3轴(平行轴)型(图7)。采用单档2级式结构,与特斯拉的Model 3和大众的ID.3减速器相同(图8)。安装在从马达伸出的输入轴上的轴承是瑞典斯凯孚(SKF)的产品。  


图7 八合一电动驱动桥的减速器
为3轴(平行轴)型,采用单档2级式结构。减速比为10.81。从马达伸出的输入轴的轴承由斯凯孚生产。(摄影:加藤康)


图8 从上面看减速器的齿轮机构
(摄影:加藤康)  

  由逆变器、DC-DC转换器、车载充电器等构成的高压零部件单元目前尚处于拆掉外盖部分的阶段(图9、10)。计划在实施2次拆解之后,再介绍详细情况。 


图9 高压零部件单元的上侧
被认为搭载了逆变器、BMS、车辆控制器功能(摄影:加藤康)


图10 高压零部件单元的下侧
被认为搭载了DC-DC转换器和车载充电器功能。(摄影:加藤康)  

  与大众ID.3的电动驱动桥及其他高压零部件对比一下就会发现,在比亚迪海豹的八合一电动驱动桥中,印有供应商名称的单独零部件很少。除了全球市场份额数一数二的电池之外,估计驱动马达、逆变器、其他高压零部件也大多由比亚迪自己开发。比亚迪的汽车业务号称采用垂直整合模式,其实力之强大可从八合一电动驱动桥窥见一斑。

中国比亚迪(BYD)的纯电动汽车(EV)“海豹(SEAL)”的拆解项目已经进入前轮处的电动驱动桥的调查。值得关注的是采用了与后轮处不同类型的驱动马达。

  移除前发动机罩下的前备箱,逆变器就会显露出来(图1)。确认安装位置后,像后轮处一样从车身下方取下电动驱动桥。 

图1 移除前发动机罩下的前备箱的情形
(摄影:加藤康)

  现身的是驱动马达、逆变器、减速器这3个主要零部件实现一体化、被称为“三合一”的普通电动驱动桥(图2)。结构为在马达和减速器的单元上方搭载逆变器的双层结构(图3)。这是许多三合一电动驱动桥采用的零部件配置。其质量的标称值为88.5kg,实际测量时为90kg。 

图2 从车辆上拆下的前轮处的电动驱动桥
马达和逆变器的外壳上安装了外罩。被认为是用于降低声音和振动。(摄影:加藤康)

图3 前轮处的电动驱动桥的零部件配置
逆变器安装在马达和减速器的单元上方。这个双层结构与后轮处基本相同。(摄影:加藤康)

  把拆下的前轮处的电动驱动桥分解为单个零部件。拆除逆变器后,可以确认驱动马达的制造商是比亚迪旗下的中国比亚迪实业有限公司(Fuzhou BYD Industrial)。本次还进一步把马达拆解为定子和转子。

  “比预想的更轻松地完成拆解。咦,结构与后面(后轮处)不一样”。后轮处使用的是在现行纯电动汽车上主流的永磁同步马达(Permanent Magnet Synchronous Motor、PMSM)。定子和转子借助强磁力固定,难以分解,但前轮处则轻松拆下。观察定子的结构,与后轮处有所不同(图4)。

图4 前轮处的驱动马达的定子
线圈等与后轮处的驱动用马达有所不同。(摄影:加藤康)

  为了确认是否使用了永磁体,将铁棒靠近转子,但没有反应(图5)。仔细观察马达的外壳,发现上面印着“Asynchronous Motor”(异步马达)的字样。有鉴于此,前轮处的驱动马达应为感应马达(Induction Motor、IM)。   

图5 前轮处的驱动马达的转子
将铁棒靠近,没有任何反应。最高转速为16500rpm。(摄影:加藤康)

前后马达的选择与特斯拉相同   

  比亚迪海豹是主要依靠在车辆后部搭载永磁同步马达的后轮驱动(RWD)纯电动汽车。此次日经BP拆解的是最高端款的四轮驱动(4WD)车型,以后轮驱动车的标准款为基础,在前轮处追加了感应马达(IM)。作为主要驱动源的后轮处永磁同步马达(PMSM)的最大输出功率为235kW,最大扭矩为360 N·m。前轮处的感应马达的最大输出功率为160kW,最大扭矩为310 N·m,输出功率和扭矩均小于后轮处。  

  以在后轮处搭载永磁同步马达的后轮驱动车为基础,在高端款的前轮处追加感应马达,使之成为四轮驱动车,这一思路与美国特斯拉的“Model 3”和“Model Y”如出一辙。Model 3和Model Y的标准款均为后轮驱动车,针对高端款设计为四轮驱动车。两者均在后轮处采用永磁同步马达,在前轮处采用感应马达(图6)。

图6 特斯拉“Model 3”的前轮处的电动驱动桥
驱动马达为感应马达。(照片:《日经XTECH》)

  从四轮驱动的纯电动汽车来看,根据行驶条件,前轮处存在不工作的时间,在此期间转子空转。永磁同步马达在转子中嵌入了永磁体,在空转时转子和定子的线圈之间产生的吸力会导致拖曳阻力,从而导致耗电增加。把基于后轮驱动的纯电动汽车改为四轮驱动时,出现了在前轮处使用感应马达的例子。 

  感应马达也存在缺点。那就是功率密度小于永磁同步马达,如果要产生相同的输出功率,则感应马达的体积要大于永磁同步马达。不过,就像比亚迪的海豹、特斯拉的Model 3和Model Y的前轮处一样,“作为辅助的驱动源时不需要太大扭矩,因此即使用感应马达也可以控制体积”(美国零部件巨头的动力总成技术人员)。   

  此外,感应马达属于不使用稀土的马达,因此在规避地缘政治风险方面也备受关注。永磁同步马达使用钕(Nd)磁铁,为了在高温环境下提高保磁力(保持磁力的能力),通常添加镝(Dy)和碲(Tb)等重稀土元素。稀土生产集中于中国,还存在价格上涨等风险。 

  比亚迪是一家中国企业,如果是在国内生产,几乎不会出现采购稀土的隐忧。不过,该公司也开始在海外生产,预计泰国的乘用车组装工厂2024年投产。在电动汽车的驱动马达方面拥有永磁同步马达以外的选项,也有助于应对海外生产过程中稀土采购出现问题的情况。比亚迪把感应马达掌握在自己手中是否是在为全球扩张铺路?

卖方卷起来了:海通刚拆完比亚迪,中信拆了Model 3

卖方分析师“卷无止尽”......

继上个月海通国际拆了一台比亚迪“元”,用87页研报展示汽车零部件的详细细节后,中信证券拆了一台特斯拉Model 3,并写了一份94页的研报。

耗时两个月,中信证券研究部TMT和汽车团队协同多家公司和机构对Model3标准续航版进行了完整的拆解。

在7月18日发布的研报中,中信证券称:

希望通过对特斯拉Model3这一智能电动的标杆车型的分析,展现特斯拉作为一家全球头部汽车企业对汽车智能电动化的思考,以期厘清后续产业发展的可能方向,更好地支持相关决策。

此前,海通国际从外观、操控、安全、性价比、续航情况等角度对2018款比亚迪元EV360智联炫酷进行评价,并呈现了这辆电动车的每一个部件,包括车身结构件、底盘、座椅、线束、多媒体系统、组合仪表、热管理系统、电池系统、电驱系统等等。甚至连隔音材料、地毯等每个拆下来的零部件都进行了图片文字描述,包括尺寸重量、工作原理、生产信息以及经销商报价等信息。

而中信证券则通过拆解,对特斯拉的E/E架构、三电、热管理、车身等几个方面进行了详细深入地分析。具体如下:

域控制器架构

据中信证券,E/E架构由分布式转向域控制结构,软硬件实现解耦,是软件定义汽车的关键,特斯拉的Model3是域控架构的引领者。

1)车身域:前左右三个车身采用位置分区而非功能分区,意在降低布线难度,大量采用HSD替代继电器;

前车身域控制器的位置在前舱,这个位置理论上来说遇到的碰撞概率要更高,因此采用铝合金的保护外壳,而左右车身域控制器由于在乘用舱内,遇到外界碰撞的概率较低,保护外壳均采用塑料结构:

2)座舱域:将T-BOX集成到座舱域控制器,同时采用了Intel的A3950芯片,思路更接近游戏平台而非手机;

座舱域是用户体验的重要组成部分,特斯拉的座舱控制平台也在不断进化中。中信证券本次拆解的特斯拉model3 2020款采用的是第二代座舱域控制器(MCU2):

MCU2由两块电路板构成,一块是主板,另一块是固定在主板上的一块小型无线通信电路板(图中粉色框所示)。这一块通信电路板包含了LTE模组、以太网控制芯片、天线接口等,相当于传统汽车中用于对外无线通信的T-box,此次将其集成在MCU中,能够节约空间和成本。我们本次拆解的2020款model3采用了Telit的LTE模组,在2021款以后特斯拉将无线模组供应商切换成移远通信。

MCU2的主板采用了双面PCB板,正面主要布局各种网络相关芯片,例如Intel和Marvell的以太网芯片,Telit的LTE模组,TI的视频串行器等。正面的另一个重要作用是提供对外接口,如蓝牙/WiFi/LTE的天线接口、摄像头输入输出接口、音频接口、USB接口、以太网接口等。

而MCU2的背面更为重要,其核心是一颗IntelAtomA3950芯片,搭配总计4GB的Micron内存和同样是Micron提供的64GBeMMC存储芯片。此外还有LGInnotek提供的WiFi/蓝牙模块等。

3)驾驶域:双FSD芯片,NPU在同等面积下相比Orin有更高的性价比,采用Linux操作系统更适配AI大模型;

特斯拉的另一个重要特色就是其智能驾驶,这部分功能是通过其自动驾驶域控制器(AP)来执行的。本部分的核心在于特斯拉自主开发的FSD芯片,其余配置则与当前其他自动驾驶控制器方案没有本质区别:

在model3所用的HW3.0版本的AP中,配备两颗FSD芯片,每颗配置4个三星2GB内存颗粒,单FSD总计8GB,同时每颗FSD配备一片东芝的32GB闪存以及一颗Spansion的64MBNORflash用于启动。网络方面,AP控制器内部包含Marvell的以太网交换机和物理层收发器,此外还有TI的高速CAN收发器。对于自动驾驶来说,定位也十分重要,因此配备了一个Ublox的GPS定位模块。

为了实现自动驾驶,特斯拉提出了一整套以视觉为基础,以FSD芯片为核心的解决方案:

其外围传感器主要包含12个超声传感器(Valeo)、8个摄像头(风挡玻璃顶3个前视,B柱2个拍摄侧前方,前翼子板2个后视,车尾1个后视摄像头,以及1个DMS摄像头)、1个毫米波雷达(大陆)。

其最核心的前视三目摄像头包含中间的主摄像头以及两侧的长焦镜头和广角镜头,形成不同视野范围的搭配,三个摄像头用的是相同的安森美图像传感器。

毫米波雷达放置于车头处车标附近,包含一块电路板和一块天线板。该毫米波雷达内部采用的是一颗Freescale控制芯片以及一颗TI的稳压电源管理芯片。

4)电控域:Model3首创采用48颗SiC MOSFET替代了84颗IGBT,体积、功耗大幅减小;

据中信证券,Model3为第一款采用全SiC功率模块电机控制器的纯电动汽车,开创SiC应用的先河:

Model3所用的SiC型号为意法半导体的ST GK026。在相同功率等级下,这款SiC模块采用激光焊接将SiC MOSFET、输入母排和输出三相铜进行连接,封装尺寸也明显小于硅模块,并且开关损耗降低75%。采用SiC模块替代IGBT模块,其系统效率可以提高5%左右,芯片数量及总面积也均有所减少。如果仍采用Model X的IGBT,则需要54-60颗IGBT。

5)动力域:BMS共管理2976节21700电池,强大的软件能力实现每节电池充放电的一致性。

Model3作为电动车,电能和电池的管理十分重要,而负责管理电池组的BMS是一个高难度产品:

主控板负责管理所有BMS相关芯片,共设置7组对外接口,包含了对充电控制器(CP)、能量转换系统(PCS)的控制信号,以及到采样板(BMB)的信号,另外还包含专门的电流电压采集信号。电路板上包含高压隔离电源、采样电路等电路模块。元器件方面,有Freescale和TI的单片机,以及运放、参考电压源、隔离器、数据采样芯片等。

在BMS的控制下,具体对电池组进行监测的是BMB电路板,对于特斯拉model3而言:

共有4个电池组,每一组配备一个BMB电路板,并且4个电路板的电路布局各不相同,彼此之间可以很容易地利用电路板上的编号进行区别,并且按照顺序用菊花链连接在一起,在1号板和4号板引出菊花链连接到主控板的P5和P6接口。

线束和连接器

1)线束:中信证券测算线束单车价值量约2000元,高压线束是新能源汽车的主要增量,Model3为了轻量化开始用铝替代铜,低压数据线在域控化进程下将有所减少;

2)连接器:电动化带来高压连接器增量,智能化带来高速连接器需求,TE(泰科)是Model3的核心供应商,国产厂商有望取得突破。

在动力电池—电驱高压线束的连接器上,Model3 采用的是TE的HC Stak 25:

其结构和功能与HC Stak 35类似,不同点在于尺寸的大小,可以看到,HC Stak 25比HC Stak 35更小,因此HC Stak 25插座端的端子是20片DEFCON端子组成(HC Stak 35为35片),不同的型号共用相同的连接器端子。连接器端子通过数量堆叠的变化能够快速完成不同型号的组装,这体现了连接器模块化生产带来的成本管控优势。

电池:特斯拉代际技术领先,4680和CTC是后续发展方向

1)电池设计核心理念在于提升比能量:由小模组到大模组再到无模组CTC,电芯尺寸由1865到2170再到4680,核心趋势都是减少电池包中非能量的结构件数量,降低成本减少重量,提升续航里程。

据中信证券,Model3电池包采用4块大模组,与同期的iD.4 X,宝马iX3的电池包相比,采用大模组技术,集成度更高,内部布局更为整洁,电池包技术目前仍处于领先地位。

2)4680电池的价值及变化:4680通过全极耳、高镍高硅、干电极、CTC的组合,实现了“能量密度高、倍率高、成本低”的不可能三角。随着模组内电池数量增加、快充需求提升,对于电池包的冷却、导热阻燃要求提升,电池包内冷却管数量增加、冷管长度减少,增加灌封、防火泡棉,保障电池包热稳定性。

三电与热管理:三电集成度不断提高,热管理率先实现全域打通。

1)三合一提升集成度,双电机实现优势互补:Model 3/Y上驱动电机、电机控制器、变速箱三者合一,集成度相比Model S/X提高,同时“小三电”和电池包集成,结构紧凑成本更低;单电机版本由感应电机向永磁电机演变,双电机版本向前感应电机后永磁电机布置演进,两种电机在高速低速区优势互补。

2)热管理全域打通,大大提升能量利用效率:热管理上,通过四通阀、八通阀的应用,由各部分独立的回路,向空调、电池系统、动力系统打通的整车热管理升级,整车热源集成,提升系统的能量利用效率。特斯拉的三电与热管理系统在高集成度方面保持领先,其示范作用将引领行业追赶升级与二次创新。

汽车车身:轻量化需求铝车身一体压铸成趋势,消费升级天幕玻璃、智能车灯变潮流

1)车身:轻量化以满足节能及提高续航要求,以铝代钢是最佳选择,并从Model Y开始进行后车身的一体压铸;

2)车灯:Model3外饰搭配兼具科技感和美感,车灯选用矩阵式LED灯源;

3)汽车玻璃:Model3天幕引领行业趋势,渗透率有望不断提升;

4)底盘:采用线控底盘,是高级别自动驾驶必由之路。

据中信证券,Model 3底盘逐步实现线控化:

经过对Model 3底盘结构的拆解,我们看到:悬架方面,特斯拉全车型均采用前轮双叉臂式独立悬架搭配后轮多连杆式独立悬架的配置,未配置空气悬架;制动系统方面,特斯拉车系使用最前沿技术,即线控制动系统Ibooster;转向系统方面,Model3仍沿用传统的电动助力转向。

线控底盘是实现自动驾驶SAEL3的“执行”基石。自动驾驶系统共分为感知、决策、控制和执行四个部分,其中底盘系统属于自动驾驶中的“执行”机构,是最终实现自动驾驶的核心功能模块。L3及L3以上更高级别自动驾驶的实现离不开底盘执行机构的快速响应和精确执行,以达到和上层的感知、决策和控制的高度协同。而底盘系统的升级也意味着其中驱动系统、制动系统和转向系统等功能模块的升级。所以,线控底盘作为更高级别自动驾驶的执行基石,是发展自动驾驶的具体抓手。

本文主要内容来自中信证券报告《从拆解Model3 看智能电动汽车发展趋势》,作者丁奇、许英博、袁健聪、尹欣驰、杨泽原、李景涛、滕冠兴、王诗宸

本文来自华尔街见闻,欢迎下载APP查看更多

变速箱养护:常见自动变速箱加油孔/观察孔速查表(二)

本期F6变速箱养护知识,将为大家继续介绍市场上各种常见车型的变速箱加油孔、观察孔位置及养护作业指导。

大众、奔腾、M丨NI系列变速箱(09G)

加油口(即观察口)与放油口为同一个位置,在底部油底壳上,将内部溢流管拆除后可以进行放油操作,加油先安装溢流管加油即可。

大众老帕萨特、桑塔纳系列变速箱(01N)

放油口即检测孔位于变速器底部油底壳上,加油口在油底壳单独的管子。

大众、奥迪、比亚迪变速箱(OAM)

此款变速箱分两种油品(波箱/阀体油),波箱和阀体放油孔分别位于差速器下方和阀体下方,加油口分别位于排挡杆旁边和阀体上方。

ZF6HP-X系列自动变速器

放油口位于变速器底部油底壳上,加油口(即观察口)在变速器尾部左侧。

ZF5HP-X系列自动变速器

放油口位于变速器底部油底壳上,加油口(即观察口)在变速器尾部左侧。

标致雪铁龙4速系列(AL4)

放油口位于变速器底部油底壳上,加油口(即观察口)在变速器放油口里面(溢流管),也可以在波箱上面加。

现代/起亚6速系列(A6MF1)

放油口位于变速器底部,加油口(即检查口)在变速器油底壳左下方。

MINI、帝豪海马VT1/2CVT系列自动变速器

放油口位于变速器底部油底壳上,加油口(即观察口)在变速器中壳油底壳前面。

现代劳恩斯8速系列变速箱

放油口位于变速器底部油底壳上,加油口(即观察口)在变速器尾部左侧。

通用5L系列自动变速器

放油口位于变速器底部油底壳上,加油口(即检测口)在变速器尾部左侧。

福特蒙迪欧、翼虎自动变速器

放油口位于变速器底部壳体上,加油口(即检测口)在变速器放油口里面。

丰田锐志、皇冠和红旗1-17等自动变速器

放油口位于变速器油底壳后端,加油口(即检测口)在变速器左侧油底壳上边缘。

奥迪A4L、A6LCVT变速箱

加油口(即观察口)与放油口为同一个位置,在底部油底壳上,将内部套管拆除后可以进行放油操作。

▼点击下方链接,填写意向单,试用F6智慧门店系统

未经允许不得转载: 汽车日报 » 比亚迪拆解视频

相关文章

themebetter

contact